Suppr超能文献

剂量-反应建模:从实验数据推断到真实人群。

Dose-Response Modeling: Extrapolating From Experimental Data to Real-World Populations.

机构信息

Emergency Response Department, Public Health England, Porton Down, UK.

Defence Science and Technology Laboratory, Porton Down, Salisbury, UK.

出版信息

Risk Anal. 2021 Jan;41(1):67-78. doi: 10.1111/risa.13597. Epub 2020 Sep 23.

Abstract

Dose-response modeling of biological agents has traditionally focused on describing laboratory-derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real-world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing-risks dose-response model to allow for variation in factors such as dose-dispersion, dose-deposition, and other within-host parameters. With data sets drawn from dose-response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.

摘要

生物制剂的剂量反应建模传统上侧重于描述实验室得出的实验数据。很少考虑到那些在实验室中受到控制但可能在现实场景中发生的因素。在这项研究中,开发了一种概率框架,该框架将 Brookmeyer 的竞争风险剂量反应模型扩展到允许剂量分散、剂量沉积和其他宿主内参数等因素发生变化。通过从吸入性炭疽、鼠疫和兔热病的剂量反应实验中提取的数据,我们说明了在某些情况下,仅考虑独立的实验数据的模型可能会高估感染数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验