Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.
Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
Cells. 2020 Sep 21;9(9):2133. doi: 10.3390/cells9092133.
Osteoclasts are the sole bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathogenic bone destruction such as inflammatory arthritis. Pharmacologically targeting osteoclasts has been a promising approach to alleviating bone disease, but there remains room for improvement in mitigating drug side effects and enhancing cell specificity. Recently, we demonstrated the crucial role of MYC and its downstream effectors in driving osteoclast differentiation. Despite these advances, upstream regulators of MYC have not been well defined. In this study, we identify nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor known to regulate the expression of phase II antioxidant enzymes, as a novel upstream regulator of MYC. NRF2 negatively regulates receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis through the ERK and p38 signaling-mediated suppression of MYC transcription. Furthermore, the ablation of MYC in osteoclasts reverses the enhanced osteoclast differentiation and activity in NRF2 deficiency in vivo and in vitro in addition to protecting NRF2-deficient mice from pathological bone loss in a murine model of inflammatory arthritis. Our findings indicate that this novel NRF2-MYC axis could be instrumental for the fine-tuning of osteoclast formation and provides additional ways in which osteoclasts could be therapeutically targeted to prevent pathological bone erosion.
破骨细胞是唯一具有骨吸收功能的细胞,在维持骨稳态重塑和炎性关节炎等病理性骨破坏中发挥着重要作用。药物靶向破骨细胞是缓解骨疾病的一种很有前途的方法,但仍有改进的空间,以减轻药物的副作用和增强细胞特异性。最近,我们证明了 MYC 及其下游效应物在驱动破骨细胞分化中的关键作用。尽管取得了这些进展,但 MYC 的上游调节因子仍未得到很好的定义。在这项研究中,我们确定了核因子红细胞 2 相关因子 2(NRF2),一种已知调节 II 期抗氧化酶表达的转录因子,是 MYC 的一个新的上游调节因子。NRF2 通过 ERK 和 p38 信号通路介导的 MYC 转录抑制,负调控核因子-κB 受体激活剂配体(RANKL)诱导的破骨细胞生成。此外,在体内和体外,NRF2 缺陷型小鼠中破骨细胞中 MYC 的缺失逆转了增强的破骨细胞分化和活性,并在炎性关节炎的小鼠模型中保护了 NRF2 缺陷型小鼠免受病理性骨丢失。我们的研究结果表明,这个新的 NRF2-MYC 轴可能是微调破骨细胞形成的关键,并提供了额外的方法来治疗性靶向破骨细胞,以防止病理性骨侵蚀。