Suppr超能文献

神经钙黏蛋白在不同再生条件下对神经元存活和轴突生长起不同作用。

Neural Cadherin Plays Distinct Roles for Neuronal Survival and Axon Growth under Different Regenerative Conditions.

机构信息

Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136.

Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136

出版信息

eNeuro. 2020 Nov 19;7(6). doi: 10.1523/ENEURO.0325-20.2020. Print 2020 Nov/Dec.

Abstract

Growing axons in the CNS often migrate along specific pathways to reach their targets. During embryonic development, this migration is guided by different types of cell adhesion molecules (CAMs) present on the surface of glial cells or other neurons, including the neural cadherin (NCAD). Axons in the adult CNS can be stimulated to regenerate, and travel long distances. Crucially, however, while a few axons are guided effectively through the injured nerve under certain conditions, most axons never migrate properly. The molecular underpinnings of the variable growth, and the glial CAMs that are responsible for CNS axon regeneration remain unclear. Here we used optic nerve crush to demonstrate that NCAD plays multifaceted functions in facilitating CNS axon regeneration. Astrocyte-specific deletion of NCAD dramatically decreases regeneration induced by phosphatase and tensin homolog (PTEN) ablation in retinal ganglion cells (RGCs). Consistent with NCAD's tendency to act as homodimers, deletion of NCAD in RGCs also reduces regeneration. Deletion of NCAD in astrocytes neither alters RGCs' mammalian target of rapamycin complex 1 (mTORC1) activity nor lesion size, two factors known to affect regeneration. Unexpectedly, however, we find that NCAD deletion in RGCs reduces PTEN-deletion-induced RGC survival. We further show that NCAD deletion, in either astrocytes or RGCs, has negligible effects on the regeneration induced by ciliary neurotrophic factor (CNTF), suggesting that other CAMs are critical under this regenerative condition. Consistent with this notion, CNTF induces expression various integrins known to mediate cell adhesion. Together, our study reveals multilayered functions of NCAD and a molecular basis of variability in guided axon growth.

摘要

中枢神经系统中的轴突通常沿着特定的途径迁移,以到达其靶标。在胚胎发育过程中,这种迁移是由神经细胞黏附分子(CAMs)的不同类型指导的,这些分子存在于神经胶质细胞或其他神经元的表面,包括神经钙黏蛋白(NCAD)。成年中枢神经系统中的轴突可以被刺激再生,并迁移很长的距离。然而,至关重要的是,尽管在某些条件下,少数轴突可以有效地在受伤的神经下被引导,但大多数轴突从未正确迁移。导致这种可变生长的分子基础以及负责中枢神经系统轴突再生的神经胶质 CAM 仍然不清楚。在这里,我们使用视神经挤压来证明 NCAD 在促进中枢神经系统轴突再生方面具有多方面的功能。星形胶质细胞特异性缺失 NCAD 会显著降低视网膜神经节细胞(RGC)中磷酸酶和张力蛋白同源物(PTEN)缺失引起的再生。与 NCAD 倾向于形成同源二聚体一致,RGC 中 NCAD 的缺失也会减少再生。星形胶质细胞中 NCAD 的缺失既不会改变 RGC 的哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)活性,也不会改变病变大小,这两个因素已知会影响再生。然而,出乎意料的是,我们发现 NCAD 的缺失会降低 PTEN 缺失诱导的 RGC 存活。我们进一步表明,星形胶质细胞或 RGC 中 NCAD 的缺失对睫状神经营养因子(CNTF)诱导的 RGC 再生几乎没有影响,这表明在这种再生条件下其他 CAM 是至关重要的。这一观点与 CNTF 诱导表达各种已知介导细胞黏附的整合素的结果一致。总的来说,我们的研究揭示了 NCAD 的多层次功能和引导轴突生长的变异性的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92e4/7688304/2278326ef454/SN-ENUJ200258F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验