Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
Endocr J. 2020 Oct 28;67(10):989-995. doi: 10.1507/endocrj.EJ20-0478. Epub 2020 Sep 24.
Primary aldosteronism is the most common form of secondary hypertension with a prevalence of 5-10% in hypertensive patients. Aldosterone-producing adenoma (APA) is a subtype of primary aldosteronism, and somatic mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CLCN2, or CTNNB1 were identified and recognized to drive aldosterone production and/or contribute to tumorigenesis in APA. Mutations of KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CLCN2 are known to activate calcium signaling, and its activation potentiate CYP11B2 (aldosterone synthesis) transcription in adrenal cells. Transcriptome analyses combined with bioinformatics using APA samples were conductive for each gene mutation mediated pivotal pathway, gene ontology, and clustering. Several important intracellular molecules in increase aldosterone production were detected by transcriptome analysis, and additional functional analyses demonstrated intracellular molecular mechanisms of aldosterone production which focused on calcium signal, CYP11B2 transcription and translation. Furthermore, DNA methylation analysis revealed that promoter region of CYP11B2 was entirely hypomethylated, but that of other steroidogenic enzymes were not in APA. Integration of transcriptome and DNA methylome analysis clarified some DNA methylation associated gene expression, and the transcripts have a role for aldosterone production. In this article, we reviewed the intracellular molecular mechanisms of aldosterone production in APA, and discussed future challenges for basic studies leading to clinical practice.
原醛症是最常见的继发性高血压形式,在高血压患者中的患病率为 5-10%。醛固酮瘤(APA)是原醛症的一个亚型,已经确定并认识到 KCNJ5、ATP1A1、ATP2B3、CACNA1D、CLCN2 或 CTNNB1 的体细胞突变可驱动醛固酮的产生和/或促成 APA 中的肿瘤发生。KCNJ5、ATP1A1、ATP2B3、CACNA1D 和 CLCN2 的突变已知可激活钙信号,其激活可增强肾上腺细胞中 CYP11B2(醛固酮合成)的转录。使用 APA 样本进行转录组分析和生物信息学相结合,有助于研究每个基因突变介导的关键途径、基因本体论和聚类。转录组分析检测到几种增加醛固酮产生的重要细胞内分子,此外,功能分析还证明了醛固酮产生的细胞内分子机制,重点关注钙信号、CYP11B2 转录和翻译。此外,DNA 甲基化分析显示 CYP11B2 的启动子区域完全低甲基化,但 APA 中的其他类固醇生成酶则没有。转录组和 DNA 甲基组分析的整合阐明了一些与 DNA 甲基化相关的基因表达,这些转录本在醛固酮的产生中发挥作用。在本文中,我们综述了 APA 中醛固酮产生的细胞内分子机制,并讨论了基础研究向临床实践转化的未来挑战。