Suppr超能文献

基于计算机模拟研究对植物成分糖原合酶激酶-3β抑制活性的洞察

Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from : in silico studies.

作者信息

Iwaloye Opeyemi, Elekofehinti Olusola Olalekan, Oluwarotimi Emmanuel Ayo, Kikiowo Babatom Iwa, Fadipe Toyin Mary

机构信息

Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria.

出版信息

In Silico Pharmacol. 2020 Sep 12;8(1):2. doi: 10.1007/s40203-020-00054-x. eCollection 2020.

Abstract

Over activity of Glycogen synthase kinase-3β (GSK-3β), a serine/threonine-protein kinase has been implicated in a number of diseases including stroke, type II diabetes and Alzheimer disease (AD). This study aimed to find novel inhibitors of GSK-3β from phyto-constituents of with the aid of computational analysis. Molecular docking, induced-fit docking (IFD), calculation of binding free energy via the MM-GBSA approach and Lipinski's rule of five (RO5) were employed to filter the compounds and determine their druggability. Most importantly, the compounds pIC were predicted by machine learning-based model generated by AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best model obtained was Model kpls_desc_38 (R = 0.8467 and Q = 0.8069), and this external validated model was utilized to predict the bioactivities of the lead compounds. While a number of characterized compounds from showed better docking score, binding free energy alongside adherence to RO5 than co-cystallized ligand, only three compounds (salvianolic acid C, ellagic acid and naringenin) showed more satisfactory pIC. The results obtained in this study can be useful to design potent inhibitors of GSK-3β.

摘要

糖原合酶激酶-3β(GSK-3β)是一种丝氨酸/苏氨酸蛋白激酶,其活性过高与包括中风、II型糖尿病和阿尔茨海默病(AD)在内的多种疾病有关。本研究旨在借助计算分析从植物成分中寻找GSK-3β的新型抑制剂。采用分子对接、诱导契合对接(IFD)、通过MM-GBSA方法计算结合自由能以及Lipinski五规则(RO5)来筛选化合物并确定其成药可能性。最重要的是,通过AutoQSAR算法生成的基于机器学习的模型预测化合物的pIC。对生成的模型进行验证以确认其预测模型。获得的最佳模型是Model kpls_desc_38(R = 0.8467,Q = 0.8069),并利用该外部验证模型预测先导化合物的生物活性。虽然从[植物名称未给出]中得到的许多已表征化合物显示出比共结晶配体更好的对接分数、结合自由能以及对RO5的符合度,但只有三种化合物(丹酚酸C、鞣花酸和柚皮素)显示出更令人满意的pIC。本研究获得的结果可用于设计有效的GSK-3β抑制剂。

相似文献

1
Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from : in silico studies.
In Silico Pharmacol. 2020 Sep 12;8(1):2. doi: 10.1007/s40203-020-00054-x. eCollection 2020.
2
E-pharmacophore-based virtual screening to identify GSK-3β inhibitors.
J Recept Signal Transduct Res. 2016 Oct;36(5):445-58. doi: 10.3109/10799893.2015.1122043. Epub 2015 Dec 20.
4
Therapeutic potential of phyto-constituents against human pancreatic α-amylase.
J Biomol Struct Dyn. 2022 Mar;40(4):1801-1812. doi: 10.1080/07391102.2020.1833758. Epub 2020 Oct 15.
5
The mood stabilizing properties of AF3581, a novel potent GSK-3β inhibitor.
Biomed Pharmacother. 2020 Aug;128:110249. doi: 10.1016/j.biopha.2020.110249. Epub 2020 May 26.
9
Pharmacophore Modeling, Ensemble Docking, Virtual Screening, and Biological Evaluation on Glycogen Synthase Kinase-3β.
Mol Inform. 2014 Sep;33(9):610-26. doi: 10.1002/minf.201400044. Epub 2014 Sep 2.

引用本文的文献

2
3
Gallic acid alleviates omeprazole-induced depressive behavior and memory impairment.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb 20. doi: 10.1007/s00210-025-03812-w.
6
Naringin and Naringenin: Potential Multi-Target Agents for Alzheimer's Disease.
Curr Med Sci. 2024 Oct;44(5):867-882. doi: 10.1007/s11596-024-2921-z. Epub 2024 Sep 30.
10
Screening of potent STAT3-SH2 domain inhibitors from JAK/STAT compound library through molecular dynamics simulation.
Mol Divers. 2023 Jun;27(3):1297-1308. doi: 10.1007/s11030-022-10490-w. Epub 2022 Jul 13.

本文引用的文献

2
Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review.
Chemosphere. 2018 Jul;203:139-150. doi: 10.1016/j.chemosphere.2018.03.179. Epub 2018 Mar 27.
4
On the virtues of automated quantitative structure-activity relationship: the new kid on the block.
Future Med Chem. 2018 Feb 1;10(3):335-342. doi: 10.4155/fmc-2017-0170. Epub 2018 Feb 2.
5
Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases.
Oxid Med Cell Longev. 2017;2017:4629495. doi: 10.1155/2017/4629495. Epub 2017 Dec 12.
6
Designing of dual inhibitors for GSK-3β and CDK5: Virtual screening and in vitro biological activities study.
Oncotarget. 2017 Mar 14;8(11):18118-18128. doi: 10.18632/oncotarget.15085.
7
AutoQSAR: an automated machine learning tool for best-practice quantitative structure-activity relationship modeling.
Future Med Chem. 2016 Oct;8(15):1825-1839. doi: 10.4155/fmc-2016-0093. Epub 2016 Sep 19.
8
Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action.
Evid Based Complement Alternat Med. 2016;2016:9729818. doi: 10.1155/2016/9729818. Epub 2016 Apr 28.
9
Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.
J Med Chem. 2016 Feb 11;59(3):1041-51. doi: 10.1021/acs.jmedchem.5b01550. Epub 2016 Jan 22.
10
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验