Suppr超能文献

基于深度学习的局部晚期鼻咽癌预后预测系统。

A Prognostic Predictive System Based on Deep Learning for Locoregionally Advanced Nasopharyngeal Carcinoma.

机构信息

Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

Department of Artificial Intelligence Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

出版信息

J Natl Cancer Inst. 2021 May 4;113(5):606-615. doi: 10.1093/jnci/djaa149.

Abstract

BACKGROUND

Images from magnetic resonance imaging (MRI) are crucial unstructured data for prognostic evaluation in nasopharyngeal carcinoma (NPC). We developed and validated a prognostic system based on the MRI features and clinical data of locoregionally advanced NPC (LA-NPC) patients to distinguish low-risk patients with LA-NPC for whom concurrent chemoradiotherapy (CCRT) is sufficient.

METHODS

This multicenter, retrospective study included 3444 patients with LA-NPC from January 1, 2010, to January 31, 2017. A 3-dimensional convolutional neural network was used to learn the image features from pretreatment MRI images. An eXtreme Gradient Boosting model was trained with the MRI features and clinical data to assign an overall score to each patient. Comprehensive evaluations were implemented to assess the performance of the predictive system. We applied the overall score to distinguish high-risk patients from low-risk patients. The clinical benefit of induction chemotherapy (IC) was analyzed in each risk group by survival curves.

RESULTS

We constructed a prognostic system displaying a concordance index of 0.776 (95% confidence interval [CI] = 0.746 to 0.806) for the internal validation cohort and 0.757 (95% CI = 0.695 to 0.819), 0.719 (95% CI = 0.650 to 0.789), and 0.746 (95% CI = 0.699 to 0.793) for the 3 external validation cohorts, which presented a statistically significant improvement compared with the conventional TNM staging system. In the high-risk group, patients who received induction chemotherapy plus CCRT had better outcomes than patients who received CCRT alone, whereas there was no statistically significant difference in the low-risk group.

CONCLUSIONS

The proposed framework can capture more complex and heterogeneous information to predict the prognosis of patients with LA-NPC and potentially contribute to clinical decision making.

摘要

背景

磁共振成像(MRI)图像是局部晚期鼻咽癌(NPC)预后评估的关键非结构化数据。我们开发并验证了一种基于局部晚期 NPC(LA-NPC)患者的 MRI 特征和临床数据的预后系统,以区分低危患者,这些患者接受同期放化疗(CCRT)即可。

方法

这项多中心、回顾性研究纳入了 2010 年 1 月 1 日至 2017 年 1 月 31 日期间的 3444 例 LA-NPC 患者。使用 3 维卷积神经网络从预处理 MRI 图像中学习图像特征。使用 MRI 特征和临床数据训练极端梯度提升模型,为每位患者分配一个总得分。通过综合评估来评估预测系统的性能。我们应用总分来区分高危患者和低危患者。通过生存曲线分析每个风险组中诱导化疗(IC)的临床获益。

结果

我们构建了一个预后系统,其内部验证队列的一致性指数为 0.776(95%置信区间[CI]:0.746 至 0.806),3 个外部验证队列的一致性指数分别为 0.757(95%CI:0.695 至 0.819)、0.719(95%CI:0.650 至 0.789)和 0.746(95%CI:0.699 至 0.793),与传统的 TNM 分期系统相比,这具有统计学意义的改善。在高危组中,接受诱导化疗加 CCRT 的患者比仅接受 CCRT 的患者预后更好,而在低危组中则没有统计学意义上的差异。

结论

所提出的框架可以捕获更复杂和异质的信息,以预测 LA-NPC 患者的预后,并可能有助于临床决策。

相似文献

1
A Prognostic Predictive System Based on Deep Learning for Locoregionally Advanced Nasopharyngeal Carcinoma.
J Natl Cancer Inst. 2021 May 4;113(5):606-615. doi: 10.1093/jnci/djaa149.
9
Meta-Analysis on Induction Chemotherapy in Locally Advanced Nasopharyngeal Carcinoma.
Oncologist. 2021 Jan;26(1):e130-e141. doi: 10.1002/ONCO.13520. Epub 2020 Oct 1.

引用本文的文献

2
Advances in Nasopharyngeal Carcinoma Staging: from the 7th to the 9th Edition of the TNM System and Future Outlook.
Curr Oncol Rep. 2025 Mar;27(3):322-332. doi: 10.1007/s11912-025-01651-9. Epub 2025 Feb 25.
6
Adaptive segmentation-to-survival learning for survival prediction from multi-modality medical images.
NPJ Precis Oncol. 2024 Oct 14;8(1):232. doi: 10.1038/s41698-024-00690-y.
7
Advancing precise diagnosis of nasopharyngeal carcinoma through endoscopy-based radiomics analysis.
iScience. 2024 Jul 26;27(9):110590. doi: 10.1016/j.isci.2024.110590. eCollection 2024 Sep 20.
8
Comprehensive multimodal deep learning survival prediction enabled by a transformer architecture: A multicenter study in glioblastoma.
Neurooncol Adv. 2024 Jul 11;6(1):vdae122. doi: 10.1093/noajnl/vdae122. eCollection 2024 Jan-Dec.

本文引用的文献

1
Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2020 Jul;18(7):873-898. doi: 10.6004/jnccn.2020.0031.
2
Prognostic Nomogram For Locoregionally Advanced Nasopharyngeal Carcinoma.
Sci Rep. 2020 Jan 21;10(1):861. doi: 10.1038/s41598-020-57968-x.
6
7
Nasopharyngeal carcinoma.
Lancet. 2019 Jul 6;394(10192):64-80. doi: 10.1016/S0140-6736(19)30956-0. Epub 2019 Jun 6.
8
Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy.
Am J Kidney Dis. 2019 Sep;74(3):300-309. doi: 10.1053/j.ajkd.2019.02.016. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验