Suppr超能文献

基于 MRI 的放射组学特征是鼻咽癌的一种定量预后生物标志物。

MRI-based radiomics signature is a quantitative prognostic biomarker for nasopharyngeal carcinoma.

机构信息

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.

出版信息

Sci Rep. 2019 Jul 18;9(1):10412. doi: 10.1038/s41598-019-46985-0.

Abstract

This study aimed to develop prognosis signatures through a radiomics analysis for patients with nasopharyngeal carcinoma (NPC) by their pretreatment diagnosis magnetic resonance imaging (MRI). A total of 208 radiomics features were extracted for each patient from a database of 303 patients. The patients were split into the training and validation cohorts according to their pretreatment diagnosis date. The radiomics feature analysis consisted of cluster analysis and prognosis model analysis for disease free-survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS) and locoregional recurrence-free survival (LRFS). Additionally, two prognosis models using clinical features only and combined radiomics and clinical features were generated to estimate the incremental prognostic value of radiomics features. Patients were clustered by non-negative matrix factorization (NMF) into two groups. It showed high correspondence with patients' T stage (p < 0.00001) and overall stage information (p < 0.00001) by chi-squared tests. There were significant differences in DFS (p = 0.0052), OS (p = 0.033), and LRFS (p = 0.037) between the two clustered groups but not in DMFS (p = 0.11) by log-rank tests. Radiomics nomograms that incorporated radiomics and clinical features could estimate DFS with the C-index of 0.751 [0.639, 0.863] and OS with the C-index of 0.845 [0.752, 0.939] in the validation cohort. The nomograms improved the prediction accuracy with the C-index value of 0.029 for DFS and 0.107 for OS compared with clinical features only. The DFS and OS radiomics nomograms developed in our study demonstrated the excellent prognostic estimation for NPC patients with a noninvasive way of MRI. The combination of clinical and radiomics features can provide more information for precise treatment decision.

摘要

这项研究旨在通过对 303 例患者的预处理诊断磁共振成像(MRI),开发用于鼻咽癌(NPC)患者的预后标志物。从数据库中为每位患者提取了总共 208 个放射组学特征。根据患者的预处理诊断日期,将患者分为训练队列和验证队列。放射组学特征分析包括无病生存(DFS)、总生存(OS)、远处转移无生存(DMFS)和局部区域无复发生存(LRFS)的聚类分析和预后模型分析。此外,生成了仅使用临床特征和联合放射组学和临床特征的两个预后模型,以评估放射组学特征的增量预后价值。通过非负矩阵分解(NMF)将患者聚类为两组。通过卡方检验,与患者 T 分期(p<0.00001)和总体分期信息(p<0.00001)高度一致。两组间在 DFS(p=0.0052)、OS(p=0.033)和 LRFS(p=0.037)方面存在显著差异,但在 DMFS(p=0.11)方面无差异。在验证队列中,纳入放射组学和临床特征的放射组学列线图可估计 DFS 的 C 指数为 0.751[0.639,0.863],OS 的 C 指数为 0.845[0.752,0.939]。与仅使用临床特征相比,列线图的 C 指数值分别提高了 0.029 用于 DFS 和 0.107 用于 OS,从而提高了预测准确性。本研究中开发的 NPC 患者 DFS 和 OS 放射组学列线图,以无创的 MRI 方式展示了对 NPC 患者的优异预后估计。临床和放射组学特征的结合可为精确的治疗决策提供更多信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cee/6639299/ac68f5d9beba/41598_2019_46985_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验