Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Queensland 4000, Australia.
School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, 170 Kessels Road, Queensland 4111, Australia.
Bioresour Technol. 2021 Jan;319:124137. doi: 10.1016/j.biortech.2020.124137. Epub 2020 Sep 17.
Biomethane production was systematically evaluated with sugarcane trash pretreated by liquid hot water (LHW), dilute acid (DA) and KOH solutions. Multiple linear regression analysis identified glucan in pretreated solid residue as well as C5 sugars and acetic acid in pretreatment hydrolysate as the key parameters affecting biomethane potentials. Moreover, biomethane production was best simulated using Chen & Hashimoto model with a predicted highest methane yield of 187 mL/g initial total solids (TS) based on LHW (130 °C for 15 min) and KOH (10% on trash, 150 °C for 60 min) pretreatments. KOH pretreatment led to a biomethane yield of 167 mL/g initial TS at day 25, 82%, 34% and 33% higher than those achieved with untreated and pretreated trash samples with optimal LHW and DA conditions, respectively. This study led to the identification of best kinetic model and pretreatment condition for biomethane production from sugarcane trash through a systematic evaluation.
采用液体热水(LHW)、稀酸(DA)和 KOH 溶液预处理甘蔗废料,系统评估了生物甲烷的生产。多元线性回归分析确定了预处理固体残渣中的葡聚糖以及预处理水解液中的 C5 糖和乙酸是影响生物甲烷潜力的关键参数。此外,使用 Chen & Hashimoto 模型对生物甲烷的生产进行了最佳模拟,根据 LHW(130°C 15 分钟)和 KOH(垃圾 10%,150°C 60 分钟)预处理,预测最高甲烷产率为 187 mL/g 初始总固体(TS)。KOH 预处理在第 25 天的生物甲烷产率为 167 mL/g 初始 TS,比未经处理和采用最佳 LHW 和 DA 条件预处理的垃圾样品分别高出 82%、34%和 33%。通过系统评估,本研究确定了从甘蔗废料生产生物甲烷的最佳动力学模型和预处理条件。