Suppr超能文献

用于高效氧还原催化剂的多角色石墨相氮化碳衍生的高孔隙率铁/氮共掺杂碳纳米片

Multi-role graphitic carbon nitride-derived highly porous iron/nitrogen co-doped carbon nanosheets for highly efficient oxygen reduction catalyst.

作者信息

Zhang Li, Qin Yuan-Hang, Yang Li, Wang Cun-Wen

机构信息

Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.

Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.

出版信息

J Colloid Interface Sci. 2021 Jan 15;582(Pt B):1257-1265. doi: 10.1016/j.jcis.2020.08.122. Epub 2020 Sep 15.

Abstract

Pyrolyzing precursors containing iron, nitrogen and carbon elements is a commonly used process for synthesizing FeNC catalysts for oxygen reduction reaction (ORR). Generally, aggregation of iron-based species is prone to occur because of a lack of chemical bonds between iron-based species and carbon matrix and synthesizing highly porous FeNC catalysts is difficult because carbon skeleton is prone to collapse during pyrolysis. Herein, highly porous FeNC catalysts with fine iron-based species are synthesized by selecting glucose as carbon source, FeCl as iron source, and urea-derived g-CN as nitrogen source, iron anchoring and stabilizing species, and pore-forming template. The multi-role g-CN-derived catalyst synthesized at 1100 °C (FeNC1100) has fine iron-based species, large specific surface area (737 m g), and extremely high pore volume (2.66 cm g). Accordingly, FeNC1100 shows a larger half-wave potential (E = 0.894 V), a higher stability (ΔE = 6 mV) after 10,000 potential cycles in alkaline media, and a higher peak power density (P = 152 mW cm) when employed as ORR catalyst of zinc-air battery, which are all superior to those of the commercial Pt/C catalyst (E = 0.864 V, ΔE = 30 mV, P = 134 mW cm). The present work brings a new method for synthesizing highly porous FeNC catalysts decorated with fine active sites for ORR.

摘要

热解含铁、氮和碳元素的前驱体是合成用于氧还原反应(ORR)的FeNC催化剂的常用方法。通常,由于铁基物种与碳基体之间缺乏化学键,铁基物种容易发生聚集,并且由于碳骨架在热解过程中容易坍塌,因此难以合成高度多孔的FeNC催化剂。在此,通过选择葡萄糖作为碳源、FeCl作为铁源、尿素衍生的g-CN作为氮源、铁锚定和稳定物种以及造孔模板,合成了具有精细铁基物种的高度多孔FeNC催化剂。在1100℃合成的多角色g-CN衍生催化剂(FeNC1100)具有精细的铁基物种、大的比表面积(737 m²/g)和极高的孔体积(2.66 cm³/g)。因此,FeNC1100在碱性介质中作为锌空气电池的ORR催化剂时,显示出更大的半波电位(E = 0.894 V)、在10000次电位循环后更高的稳定性(ΔE = 6 mV)以及更高的峰值功率密度(P = 152 mW/cm²),这些均优于商业Pt/C催化剂(E = 0.864 V,ΔE = 30 mV,P = 134 mW/cm²)。本工作为合成具有精细活性位点的用于ORR的高度多孔FeNC催化剂带来了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验