Mehmood Asad, Ali Basit, Gong Mengjun, Gyu Kim Min, Kim Ji-Young, Bae Jee-Hwan, Kucernak Anthony, Kang Yong-Mook, Nam Kyung-Wan
Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.
Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
J Colloid Interface Sci. 2021 Aug 15;596:148-157. doi: 10.1016/j.jcis.2021.03.081. Epub 2021 Mar 19.
Nitrogen-doped porous carbons containing atomically dispersed iron are prime candidates for substituting platinum-based catalysts for oxygen reduction reaction (ORR) in fuel cells. These carbon catalysts are classically synthesizedviacomplicated routes involving multiple heat-treatment steps to form the desired Fe-N sites. We herein developed a highly active FeNC catalyst comprising of exclusive Fe-N sites by a simplified solid-state synthesis protocol involving only a single heat-treatment. Imidazole is pyrolyzed in the presence of an inorganic salt-melt resulting in highly porous carbon sheets decorated with abundant Fe-N centers, which yielded a high density of electrochemically accessible active sites (1.36 × 10 sites g) as determined by the in situ nitrite stripping technique. The optimized catalyst delivered a remarkable ORR activity with a half-wave potential (E) of 0.905 V in alkaline electrolyte surpassing the benchmark Pt catalyst by 55 mV. In acidic electrolyte, an E of 0.760 V is achieved at a low loading level (0.29 mg cm). In PEMFC tests, a current density of 2.3 mA cm is achieved at 0.90 V under H-O conditions, reflecting high kinetic activity of the optimized catalyst.
含有原子级分散铁的氮掺杂多孔碳是替代燃料电池中氧还原反应(ORR)铂基催化剂的主要候选材料。这些碳催化剂传统上是通过复杂的路线合成的,涉及多个热处理步骤以形成所需的Fe-N位点。我们在此通过仅涉及单一热处理的简化固态合成方案开发了一种由独特的Fe-N位点组成的高活性FeNC催化剂。咪唑在无机盐熔体存在下热解,生成装饰有大量Fe-N中心的高度多孔碳片,通过原位亚硝酸盐溶出技术测定,其产生了高密度的电化学可及活性位点(1.36×10个位点/克)。优化后的催化剂在碱性电解质中表现出显著的ORR活性,半波电位(E1/2)为0.905 V,比基准Pt催化剂高出55 mV。在酸性电解质中,在低负载水平(0.29毫克/平方厘米)下实现了0.760 V的E1/2。在质子交换膜燃料电池测试中,在H2-O2条件下,在0.90 V时实现了2.3毫安/平方厘米的电流密度,反映了优化后催化剂的高动力学活性。