Lu Tsung-Cheng, Hsieh Timothy H, Grover Tarun
Department of Physics, University of California at San Diego, La Jolla, California 92093, USA.
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett. 2020 Sep 11;125(11):116801. doi: 10.1103/PhysRevLett.125.116801.
We propose a diagnostic for finite temperature topological order using "topological entanglement negativity," the long-range component of a mixed-state entanglement measure. As a demonstration, we study the toric code model in d spatial dimensions for d=2,3,4, and find that when topological order survives thermal fluctuations, it possesses a nonzero topological entanglement negativity, whose value is equal to the topological entanglement entropy at zero temperature. Furthermore, we show that the Gibbs state of 2D and 3D toric code at any nonzero temperature, and that of 4D toric code above a certain critical temperature, can be expressed as a convex combination of short-range entangled pure states, consistent with the absence of topological order.
我们提出了一种利用“拓扑纠缠负性”(一种混合态纠缠度量的长程分量)来诊断有限温度下拓扑序的方法。作为一个示例,我们研究了空间维度(d = 2)、(3)、(4)的(d)维环面码模型,发现当拓扑序在热涨落下存活时,它具有非零的拓扑纠缠负性,其值等于零温度下的拓扑纠缠熵。此外,我们表明二维和三维环面码在任何非零温度下的吉布斯态,以及四维环面码在高于某个临界温度时的吉布斯态,可以表示为短程纠缠纯态的凸组合,这与不存在拓扑序是一致的。