Suppr超能文献

凸量子资源理论中基于权重的资源量词的操作解释

Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories.

作者信息

Ducuara Andrés F, Skrzypczyk Paul

机构信息

Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom.

Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom.

出版信息

Phys Rev Lett. 2020 Sep 11;125(11):110401. doi: 10.1103/PhysRevLett.125.110401.

Abstract

We introduce the resource quantifier of weight of resource for convex quantum resource theories of states and measurements with arbitrary resources. We show that it captures the advantage that a resourceful state (measurement) offers over all possible free states (measurements) in the operational task of exclusion of subchannels (states). Furthermore, we introduce information-theoretic quantities related to exclusion for quantum channels and find a connection between the weight of resource of a measurement and the exclusion-type information of quantum-to-classical channels. Our results apply to the resource theory of entanglement in which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21-year-old entanglement quantifier.

摘要

我们为具有任意资源的态与测量的凸量子资源理论引入了资源权重的资源量化器。我们表明,在排除子信道(态)的操作任务中,它捕捉到了一个有资源的态(测量)相对于所有可能的自由态(测量)所具有的优势。此外,我们引入了与量子信道排除相关的信息论量,并找到了测量的资源权重与量子到经典信道的排除型信息之间的联系。我们的结果适用于纠缠资源理论,其中资源权重被称为1998年引入的最佳可分近似或莱温斯坦 - 桑佩拉分解。因此,这里得到的结果为这个有21年历史的纠缠量化器提供了一种操作解释。

相似文献

1
Operational Interpretation of Weight-Based Resource Quantifiers in Convex Quantum Resource Theories.
Phys Rev Lett. 2020 Sep 11;125(11):110401. doi: 10.1103/PhysRevLett.125.110401.
2
Operational Advantage of Quantum Resources in Subchannel Discrimination.
Phys Rev Lett. 2019 Apr 12;122(14):140402. doi: 10.1103/PhysRevLett.122.140402.
3
All Quantum Resources Provide an Advantage in Exclusion Tasks.
Phys Rev Lett. 2020 Sep 11;125(11):110402. doi: 10.1103/PhysRevLett.125.110402.
4
Quantifying Quantum Resources with Conic Programming.
Phys Rev Lett. 2019 Apr 5;122(13):130404. doi: 10.1103/PhysRevLett.122.130404.
5
Extendibility Limits the Performance of Quantum Processors.
Phys Rev Lett. 2019 Aug 16;123(7):070502. doi: 10.1103/PhysRevLett.123.070502.
6
Every Quantum Helps: Operational Advantage of Quantum Resources beyond Convexity.
Phys Rev Lett. 2024 Apr 12;132(15):150201. doi: 10.1103/PhysRevLett.132.150201.
7
Relating the Resource Theories of Entanglement and Quantum Coherence.
Phys Rev Lett. 2016 Jul 8;117(2):020402. doi: 10.1103/PhysRevLett.117.020402.
8
Robustness of Measurement, Discrimination Games, and Accessible Information.
Phys Rev Lett. 2019 Apr 12;122(14):140403. doi: 10.1103/PhysRevLett.122.140403.
9
Operational Quantification of Continuous-Variable Quantum Resources.
Phys Rev Lett. 2021 Mar 19;126(11):110403. doi: 10.1103/PhysRevLett.126.110403.
10
One-Shot Operational Quantum Resource Theory.
Phys Rev Lett. 2019 Jul 12;123(2):020401. doi: 10.1103/PhysRevLett.123.020401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验