Ducuara Andrés F, Skrzypczyk Paul
Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom.
Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom.
Phys Rev Lett. 2020 Sep 11;125(11):110401. doi: 10.1103/PhysRevLett.125.110401.
We introduce the resource quantifier of weight of resource for convex quantum resource theories of states and measurements with arbitrary resources. We show that it captures the advantage that a resourceful state (measurement) offers over all possible free states (measurements) in the operational task of exclusion of subchannels (states). Furthermore, we introduce information-theoretic quantities related to exclusion for quantum channels and find a connection between the weight of resource of a measurement and the exclusion-type information of quantum-to-classical channels. Our results apply to the resource theory of entanglement in which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposition introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21-year-old entanglement quantifier.
我们为具有任意资源的态与测量的凸量子资源理论引入了资源权重的资源量化器。我们表明,在排除子信道(态)的操作任务中,它捕捉到了一个有资源的态(测量)相对于所有可能的自由态(测量)所具有的优势。此外,我们引入了与量子信道排除相关的信息论量,并找到了测量的资源权重与量子到经典信道的排除型信息之间的联系。我们的结果适用于纠缠资源理论,其中资源权重被称为1998年引入的最佳可分近似或莱温斯坦 - 桑佩拉分解。因此,这里得到的结果为这个有21年历史的纠缠量化器提供了一种操作解释。