Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Centre for Quantum Information & Communication (QuIC), École polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, B-1050, Belgium.
Phys Rev Lett. 2019 Aug 16;123(7):070502. doi: 10.1103/PhysRevLett.123.070502.
Resource theories in quantum information science are helpful for the study and quantification of the performance of information-processing tasks that involve quantum systems. These resource theories also find applications in other areas of study; e.g., the resource theories of entanglement and coherence have found use and implications in the study of quantum thermodynamics and memory effects in quantum dynamics. In this paper, we introduce the resource theory of unextendibility, which is associated with the inability of extending quantum entanglement in a given quantum state to multiple parties. The free states in this resource theory are the k-extendible states, and the free channels are k-extendible channels, which preserve the class of k-extendible states. We make use of this resource theory to derive nonasymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times, along with the assistance of k-extendible channels at no cost. We then show that the bounds obtained are significantly tighter than previously known bounds for quantum communication over both the depolarizing and erasure channels.
资源理论在量子信息科学中对于研究和量化涉及量子系统的信息处理任务的性能很有帮助。这些资源理论在其他研究领域也有应用;例如,纠缠和相干性的资源理论在量子热力学和量子动力学中的记忆效应的研究中得到了应用和启示。在本文中,我们引入了不可扩展资源理论,它与在给定量子态中将量子纠缠扩展到多个部分的能力受限有关。该资源理论中的自由态是可 k 扩展态,自由信道是可 k 扩展信道,它们保持了 k 可扩展态的类。我们利用这个资源理论,通过利用任意量子信道有限次,并在不花费任何代价的情况下利用 k 可扩展信道,来推导出量子通信或纠缠保护的速率的非渐近上界。然后我们表明,与在去极化和擦除信道上的量子通信的以前已知的界相比,所得到的界明显更紧。