Suppr超能文献

靶向分子定位成像方法在肿瘤微血管中的应用。

A Targeted Molecular Localization Imaging Method Applied to Tumor Microvasculature.

机构信息

From the Department of Biomedical Engineering.

出版信息

Invest Radiol. 2021 Apr 1;56(4):197-206. doi: 10.1097/RLI.0000000000000728.

Abstract

OBJECTIVES

Ultrasound contrast agents, consisting of gas-filled microbubbles (MBs), have been imaged using several techniques that include ultrasound localization microscopy and targeted molecular imaging. Each of these techniques aims to provide indicators of the disease state but has traditionally been performed independently without co-localization of molecular markers and super-resolved vessels. In this article, we present a new imaging technology: a targeted molecular localization (TML) approach, which uses a single imaging sequence and reconstruction approach to co-localize super-resolved vasculature with molecular imaging signature to provide simultaneous anatomic and biological information for potential multiscale disease evaluation.

MATERIALS AND METHODS

The feasibility of the proposed TML technique was validated in a murine hindlimb tumor model. Targeted molecular localization imaging was performed on 3 groups, which included control tissue (leg), tumor tissue, and tumor tissue after sunitinib an-tivascular treatment. Quantitative measures for vascular index (VI) and molecular index (MITML) were calculated from the microvasculature and TML images, respectively. In addition to these conventional metrics, a new metric unique to the TML technique, reporting the ratio of targeted molecular index to vessel surface, was assessed.

RESULTS

The quantitative resolution results of the TML approach showed resolved resolution of the microvasculature down to 28.8 μm. Vascular index increased in tumors with and without sunitinib compared with the control leg, but the trend was not statistically significant. A decrease in MITML was observed for the tumor after treatment (P < 0.0005) and for the control leg (P < 0.005) compared with the tumor before treatment. Statistical differences in the ratio of molecular index to vessel surface were found between all groups: the control leg and tumor (P < 0.05), the control leg and tumor after sunitinib treatment (P < 0.05), and between tumors with and without sunitinib treatment (P < 0.001).

CONCLUSIONS

These findings validated the technical feasibility of the TML method and pre-clinical feasibility for differentiating between the normal and diseased tissue states.

摘要

目的

超声造影剂由充入气体的微泡(MB)组成,已经使用几种技术进行了成像,包括超声定位显微镜和靶向分子成像。这些技术中的每一种都旨在提供疾病状态的指标,但传统上都是独立进行的,没有分子标记物和超分辨率血管的共定位。在本文中,我们提出了一种新的成像技术:靶向分子定位(TML)方法,该方法使用单一的成像序列和重建方法来共定位超分辨率血管与分子成像特征,以提供潜在的多尺度疾病评估的同时解剖学和生物学信息。

材料和方法

在小鼠后肢肿瘤模型中验证了所提出的 TML 技术的可行性。对 3 组进行了靶向分子定位成像,包括对照组织(腿)、肿瘤组织和舒尼替尼抗血管治疗后的肿瘤组织。从微血管和 TML 图像分别计算血管指数(VI)和分子指数(MITML)的定量测量值。除了这些常规指标外,还评估了一种新的 TML 技术特有的指标,报告靶向分子指数与血管表面的比值。

结果

TML 方法的定量分辨率结果显示,微血管的分辨率可提高到 28.8 μm。与对照腿相比,肿瘤中血管指数在有和没有舒尼替尼的情况下均增加,但趋势无统计学意义。与治疗前的肿瘤相比,治疗后的肿瘤(P < 0.0005)和对照腿(P < 0.005)的 MITML 降低。在所有组之间发现分子指数与血管表面的比值存在统计学差异:对照腿和肿瘤(P < 0.05),对照腿和舒尼替尼治疗后的肿瘤(P < 0.05),以及有和没有舒尼替尼治疗的肿瘤之间(P < 0.001)。

结论

这些发现验证了 TML 方法的技术可行性和区分正常和疾病组织状态的临床前可行性。

相似文献

1
A Targeted Molecular Localization Imaging Method Applied to Tumor Microvasculature.
Invest Radiol. 2021 Apr 1;56(4):197-206. doi: 10.1097/RLI.0000000000000728.
2
Ultrasound localization microscopy.
Z Med Phys. 2023 Aug;33(3):292-308. doi: 10.1016/j.zemedi.2023.02.004. Epub 2023 Jun 15.
4
Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging.
Ultrasound Med Biol. 2016 Mar;42(3):769-81. doi: 10.1016/j.ultrasmedbio.2015.10.015. Epub 2015 Dec 8.
5
Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy ex-vivo and in-vivo.
Biomed Phys Eng Express. 2020 Apr 21;6(3):035019. doi: 10.1088/2057-1976/ab7f26.
6
A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy.
Curr Med Sci. 2022 Feb;42(1):1-16. doi: 10.1007/s11596-021-2459-2. Epub 2022 Feb 15.
7
In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles.
IEEE Trans Med Imaging. 2015 Feb;34(2):433-40. doi: 10.1109/TMI.2014.2359650. Epub 2014 Sep 23.
8
Evaluation of tumor microvasculature with 3D ultrasound localization microscopy based on 2D matrix array.
Eur Radiol. 2024 Aug;34(8):5250-5259. doi: 10.1007/s00330-023-10039-x. Epub 2024 Jan 24.
9
Use of 3-D Contrast-Enhanced Ultrasound to Evaluate Tumor Microvasculature After Nanoparticle-Mediated Modulation.
Ultrasound Med Biol. 2020 Feb;46(2):369-376. doi: 10.1016/j.ultrasmedbio.2019.09.019. Epub 2019 Nov 4.
10
Super-resolution Ultrasound Imaging.
Ultrasound Med Biol. 2020 Apr;46(4):865-891. doi: 10.1016/j.ultrasmedbio.2019.11.013. Epub 2020 Jan 21.

引用本文的文献

1
Evaluation of tumor microvasculature with 3D ultrasound localization microscopy based on 2D matrix array.
Eur Radiol. 2024 Aug;34(8):5250-5259. doi: 10.1007/s00330-023-10039-x. Epub 2024 Jan 24.
2
Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo.
IEEE Open J Ultrason Ferroelectr Freq Control. 2022;2:237-249. doi: 10.1109/ojuffc.2022.3212342. Epub 2022 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验