Tsai C S, Godin J R
Int J Biochem. 1987;19(4):337-43. doi: 10.1016/0020-711x(87)90007-3.
Yeast glutathione reductase exists in a single molecular form which exhibits preferred NADPH and weak NADH linked multifunctional activities. Kinetic parameters for the NADPH and NADH linked reductase, transhydrogenase, electron transferase and diaphorase reactions have been determined. The functional preference for the NADPH linked reductase reaction is kinetically related to the high catalytic efficiency and low dissociation constants for substrates. NADP+ and NAD+ may interact with two different sites or different kinetic forms of the enzyme. The active site disulfide and histidine are required for the reductase activity but are not essential to the transhydrogenase, electron transferase and diaphorase activities. Amidation of carboxyl groups and Co(II) chelation of glutathione reductase facilitate the electron transferase reaction presumably by encouraging the formation of an anionic flavosemiquinone.