Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary.
Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117, Budapest, Hungary.
Cell Mol Life Sci. 2021 Mar;78(5):2329-2339. doi: 10.1007/s00018-020-03651-3. Epub 2020 Sep 26.
Atomic-level structural insight on the human ABCG2 membrane protein, a pharmacologically important transporter, has been recently revealed by several key papers. In spite of the wealth of structural data, the pathway of transmembrane movement for the large variety of structurally different ABCG2 substrates and the physiological lipid regulation of the transporter has not been elucidated. The complex molecular dynamics simulations presented here may provide a breakthrough in understanding the steps of the substrate transport process and its regulation by cholesterol. Our analysis revealed drug binding cavities other than the central binding site and delineated a putative dynamic transport pathway for substrates with variable structures. We found that membrane cholesterol accelerated drug transport by promoting the closure of cytoplasmic protein regions. Since ABCG2 is present in all major biological barriers and drug-metabolizing organs, influences the pharmacokinetics of numerous clinically applied drugs, and plays a key role in uric acid extrusion, this information may significantly promote a reliable prediction of clinically important substrate characteristics and drug-drug interactions.
最近,一些关键论文揭示了人类 ABCG2 膜蛋白的原子级结构见解,该蛋白是一种具有重要药理学意义的转运蛋白。尽管已经有了大量的结构数据,但对于各种结构不同的 ABCG2 底物的跨膜运动途径以及转运蛋白的生理脂质调节仍然没有得到阐明。本文提出的复杂分子动力学模拟可能为理解底物运输过程及其受胆固醇调节的步骤提供突破。我们的分析揭示了除中央结合位点之外的药物结合腔,并描绘了具有不同结构的底物的可能的动态转运途径。我们发现,膜胆固醇通过促进细胞质蛋白区域的闭合来加速药物转运。由于 ABCG2 存在于所有主要的生物屏障和药物代谢器官中,影响着许多临床应用药物的药代动力学,并在尿酸排泄中发挥关键作用,因此这些信息可能会显著促进对临床重要底物特征和药物相互作用的可靠预测。