Das Anup, Saffaran Sina, Chikhani Marc, Scott Timothy E, Laviola Marianna, Yehya Nadir, Laffey John G, Hardman Jonathan G, Bates Declan G
School of Engineering, University of Warwick, Coventry, United Kingdom.
Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.
Crit Care Explor. 2020 Sep 18;2(9):e0202. doi: 10.1097/CCE.0000000000000202. eCollection 2020 Sep.
Patients with coronavirus disease 2019 acute respiratory distress syndrome appear to present with at least two distinct phenotypes: severe hypoxemia with relatively well-preserved lung compliance and lung gas volumes (type 1) and a more conventional acute respiratory distress syndrome phenotype, displaying the typical characteristics of the "baby lung" (type 2). We aimed to test plausible hypotheses regarding the pathophysiologic mechanisms underlying coronavirus disease 2019 acute respiratory distress syndrome and to evaluate the resulting implications for ventilatory management.
We adapted a high-fidelity computational simulator, previously validated in several studies of acute respiratory distress syndrome, to: 1) develop quantitative insights into the key pathophysiologic differences between the coronavirus disease 2019 acute respiratory distress syndrome and the conventional acute respiratory distress syndrome and 2) assess the impact of different positive end-expiratory pressure, Fio and tidal volume settings.
Interdisciplinary Collaboration in Systems Medicine Research Network.
The simulator was calibrated to represent coronavirus disease 2019 acute respiratory distress syndrome patients with both normal and elevated body mass indices undergoing invasive mechanical ventilation.
None.
An acute respiratory distress syndrome model implementing disruption of hypoxic pulmonary vasoconstriction and vasodilation leading to hyperperfusion of collapsed lung regions failed to replicate clinical data on type 1 coronavirus disease 2019 acute respiratory distress syndrome patients. Adding mechanisms to reflect disruption of alveolar gas-exchange due to the effects of pneumonitis and heightened vascular resistance due to the emergence of microthrombi produced levels of ventilation perfusion mismatch and hypoxemia consistent with data from type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, while preserving close-to-normal lung compliance and gas volumes. Atypical responses to positive end-expiratory pressure increments between 5 and 15 cm HO were observed for this type 1 coronavirus disease 2019 acute respiratory distress syndrome model across a range of measures: increasing positive end-expiratory pressure resulted in reduced lung compliance and no improvement in oxygenation, whereas mechanical power, driving pressure, and plateau pressure all increased. Fio settings based on acute respiratory distress syndrome network protocols at different positive end-expiratory pressure levels were insufficient to achieve adequate oxygenation. Incrementing tidal volumes from 5 to 10 mL/kg produced similar increases in multiple indicators of ventilator-induced lung injury in the type 1 coronavirus disease 2019 acute respiratory distress syndrome model to those seen in a conventional acute respiratory distress syndrome model.
Our model suggests that use of standard positive end-expiratory pressure/Fio tables, higher positive end-expiratory pressure strategies, and higher tidal volumes may all be potentially deleterious in type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, and that a highly personalized approach to treatment is advisable.
2019冠状病毒病急性呼吸窘迫综合征患者似乎至少呈现出两种不同的表型:严重低氧血症且肺顺应性和肺气体容积相对保留较好(1型),以及更典型的急性呼吸窘迫综合征表型,表现出“婴儿肺”的典型特征(2型)。我们旨在验证关于2019冠状病毒病急性呼吸窘迫综合征潜在病理生理机制的合理假设,并评估其对通气管理的影响。
我们采用了一种高保真计算模拟器,该模拟器先前已在多项急性呼吸窘迫综合征研究中得到验证,以:1)对2019冠状病毒病急性呼吸窘迫综合征与传统急性呼吸窘迫综合征之间关键的病理生理差异进行定量分析;2)评估不同呼气末正压、吸入氧分数和潮气量设置的影响。
系统医学研究网络中的跨学科合作。
该模拟器经过校准,以代表接受有创机械通气的体重指数正常和升高的2019冠状病毒病急性呼吸窘迫综合征患者。
无。
一个实施低氧性肺血管收缩和血管舒张破坏导致肺萎陷区域血流灌注过多的急性呼吸窘迫综合征模型未能复制1型2019冠状病毒病急性呼吸窘迫综合征患者的临床数据。添加反映肺炎影响导致肺泡气体交换破坏以及微血栓形成导致血管阻力增加的机制后,所产生的通气灌注不匹配和低氧血症水平与1型2019冠状病毒病急性呼吸窘迫综合征患者的数据一致,同时保持接近正常的肺顺应性和气体容积。在一系列测量指标中,观察到该1型2019冠状病毒病急性呼吸窘迫综合征模型对呼气末正压在5至15 cm H₂O之间增加的非典型反应:呼气末正压增加导致肺顺应性降低且氧合无改善,而机械功率、驱动压力和平台压均增加。基于急性呼吸窘迫综合征网络协议在不同呼气末正压水平设置的吸入氧分数不足以实现充分氧合。在1型2019冠状病毒病急性呼吸窘迫综合征模型中,将潮气量从5 mL/kg增加到10 mL/kg,在多个呼吸机诱导性肺损伤指标上产生的增加与传统急性呼吸窘迫综合征模型中观察到的相似。
我们的模型表明,对于1型2019冠状病毒病急性呼吸窘迫综合征患者,使用标准的呼气末正压/吸入氧分数表格、较高的呼气末正压策略和较高的潮气量可能都有潜在危害,建议采用高度个性化的治疗方法。