Peng Yufan, Zhang Rui, Fan Binbin, Li Weijian, Chen Zhen, Liu Hui, Gao Peng, Ni Shibing, Liu Jilei, Chen Xiaohua
College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, China.
College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, 264000, China.
Small. 2020 Oct;16(42):e2003724. doi: 10.1002/smll.202003724. Epub 2020 Sep 28.
Potassium ion hybrid capacitors (PIHCs) are of particular interest benefiting from high energy/power densities. However, challenges lie in the kinetic mismatch between battery-type anode and capacitive-type cathode, as well as the difficulty in achieving optimized charge/mass balance. These significantly sacrifice the electrochemical performance of PIHCs. Here, strategies including charge/mass balance pursuance, electrolyte optimization, and tailored electrode design, are employed, together, to address these challenges. The key parameters determining the energy storage properties of PIHCs are identified. Specifically, i) the good kinetic match between anode and cathode translates into the very small variation of cathode/anode mass ratio at various rates. This sets general rules for the pursuance of charge balance, and to maximize the electrochemical performance of hybrid devices. ii) A potassium bis(fluoroslufonyl)imide (KFSI)-based electrolyte promotes better electrode kinetics and allows for the formation of more stable and intact solid electrolyte interphase layer, with respect to potassium hexafluorophosphate (KPF )-based electrolyte. And iii) hierarchically porous N/O codoped carbon nanosheets (NOCSs) with enlarged interlayer spacing, disordered structure, and abundant pyridinic-N functional groups are advantageous in terms of high electronic/ionic transport dynamics and structural stability. All these together, contribute to the high energy/power density of the activated carbon//NOCSs PIHCs (113.4 Wh kg , at 17,000 W Kg ).
钾离子混合电容器(PIHCs)因其高能量/功率密度而备受关注。然而,挑战在于电池型阳极和电容型阴极之间的动力学不匹配,以及实现优化的电荷/质量平衡的困难。这些因素显著牺牲了PIHCs的电化学性能。在此,我们共同采用了包括追求电荷/质量平衡、优化电解质和定制电极设计在内的策略来应对这些挑战。确定了决定PIHCs储能性能的关键参数。具体而言,i)阳极和阴极之间良好的动力学匹配转化为在各种速率下阴极/阳极质量比的极小变化。这为追求电荷平衡以及最大化混合器件的电化学性能设定了一般规则。ii)相对于基于六氟磷酸钾(KPF)的电解质,基于双(氟磺酰)亚胺钾(KFSI)的电解质促进了更好的电极动力学,并允许形成更稳定和完整的固体电解质界面层。并且iii)具有扩大的层间距、无序结构和丰富的吡啶氮官能团的分级多孔氮/氧共掺杂碳纳米片(NOCSs)在高电子/离子传输动力学和结构稳定性方面具有优势。所有这些共同促成了活性炭//NOCSs PIHCs的高能量/功率密度(在17,000 W Kg时为113.4 Wh kg)。