Yi Yuyang, Zeng Zhihan, Lian Xueyu, Dou Shixue, Sun Jingyu
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China.
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia.
Small. 2022 Apr;18(13):e2107139. doi: 10.1002/smll.202107139. Epub 2022 Jan 31.
Potassium-ion hybrid capacitors (PIHCs) have been considered as an emerging device to render grid-scale energy storage. Nevertheless, the sluggish kinetics at the anode side and limited capacity output at the cathode side remain daunting challenges for the overall performances of PIHCs. Herein, an exquisite "homologous strategy" to devise multi-dimensional N-doped carbon nanopolyhedron@nanosheet anode and activated N-doped hierarchical carbon cathode targeting high-performance PIHCs is reported. The anode material harnessing a dual-carbon structure and the cathode candidate affording a high specific surface area (2651 m g ) act in concert with a concentrated ether-based electrolyte, resulting in an excellent half cell performance. The related storage mechanism is systematically revealed by in situ electrokinetic characterizations. More encouragingly, the thus-derived PIHC full cell demonstrates a favorable energy output (157 Wh kg ), showing distinct advantages over the state-of-the-art PIHC counterparts.
钾离子混合电容器(PIHCs)被认为是一种用于实现电网规模储能的新兴装置。然而,阳极侧缓慢的动力学和阴极侧有限的容量输出仍然是PIHCs整体性能面临的严峻挑战。在此,报道了一种精妙的“同源策略”,用于设计针对高性能PIHCs的多维氮掺杂碳纳米多面体@纳米片阳极和活性氮掺杂分级碳阴极。利用双碳结构的阳极材料和具有高比表面积(2651 m g)的阴极候选材料与基于醚的浓电解质协同作用,产生了优异的半电池性能。通过原位电动表征系统地揭示了相关的存储机制。更令人鼓舞的是,由此衍生的PIHC全电池展示出良好的能量输出(157 Wh kg),与最先进的PIHC同类产品相比具有明显优势。