Vincent-Dospital Tom, Toussaint Renaud, Santucci Stéphane, Vanel Loïc, Bonamy Daniel, Hattali Lamine, Cochard Alain, Flekkøy Eirik G, Måløy Knut Jørgen
Université de Strasbourg, CNRS, Institut de Physique du Globe de Strasbourg, UMR 7516, F-67000 Strasbourg, France.
Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France and Mechanics of Disordered Media Laboratory, Lavrentyev Institute of Hydrodynamics of the Russian Academy of Science, Russia.
Soft Matter. 2020 Oct 28;16(41):9590-9602. doi: 10.1039/d0sm01062f.
While of paramount importance in material science, the dynamics of cracks still lacks a complete physical explanation. The transition from their slow creep behavior to a fast propagation regime is a notable key, as it leads to full material failure if the size of a fast avalanche reaches that of the system. We here show that a simple thermodynamics approach can actually account for such complex crack dynamics, and in particular for the non-monotonic force-velocity curves commonly observed in mechanical tests on various materials. We consider a thermally activated failure process that is coupled with the production and the diffusion of heat at the fracture tip. In this framework, the rise in temperature only affects the sub-critical crack dynamics and not the mechanical properties of the material. We show that this description can quantitatively reproduce the rupture of two different polymeric materials (namely, the mode I opening of polymethylmethacrylate (PMMA) plates, and the peeling of pressure sensitive adhesive (PSA) tapes), from the very slow to the very fast fracturing regimes, over seven to nine decades of crack propagation velocities. In particular, the fastest regime is obtained with an increase of temperature of thousands of Kelvins, on the molecular scale around the crack tip. Although surprising, such an extreme temperature is actually consistent with different experimental observations that accompany the fast propagation of cracks, namely, fractoluminescence (i.e., the emission of visible light during rupture) and a complex morphology of post-mortem fracture surfaces, which could be due to the sublimation of bubbles.
虽然裂纹动力学在材料科学中至关重要,但仍缺乏完整的物理解释。从其缓慢蠕变行为到快速扩展状态的转变是一个显著的关键因素,因为如果快速崩塌的规模达到系统规模,就会导致材料完全失效。我们在此表明,一种简单的热力学方法实际上可以解释这种复杂的裂纹动力学,特别是可以解释在对各种材料进行的力学测试中常见的非单调力 - 速度曲线。我们考虑一个热激活失效过程,该过程与裂纹尖端热量的产生和扩散相关联。在此框架下,温度升高仅影响亚临界裂纹动力学,而不影响材料的力学性能。我们表明,这种描述能够定量地再现两种不同聚合物材料的破裂情况(即聚甲基丙烯酸甲酯(PMMA)板的I型开裂以及压敏胶(PSA)胶带的剥离),涵盖从非常缓慢到非常快速的断裂状态,裂纹扩展速度跨越七到九个数量级。特别是,在裂纹尖端周围的分子尺度上,通过数千开尔文的温度升高可获得最快的状态。尽管令人惊讶,但这样的极端温度实际上与伴随裂纹快速扩展的不同实验观察结果一致,即断裂发光(即破裂过程中可见光的发射)以及死后断裂表面的复杂形态,这可能是由于气泡升华所致。