Vincent-Dospital Tom, Toussaint Renaud, Måløy Knut Jørgen
SFF Porelab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway.
Université de Strasbourg, CNRS, Institut Terre & Environnement de Strasbourg, UMR 7063, Strasbourg, France.
Front Neurosci. 2021 Oct 28;15:780623. doi: 10.3389/fnins.2021.780623. eCollection 2021.
Mechanical pain (or mechanical algesia) can both be a vital mechanism warning us for dangers or an undesired medical symptom important to mitigate. Thus, a comprehensive understanding of the different mechanisms responsible for this type of pain is paramount. In this work, we study the tearing of porcine skin in front of an infrared camera, and show that mechanical injuries in biological tissues can generate enough heat to stimulate the neural network. In particular, we report local temperature elevations of up to 24°C around fast cutaneous ruptures, which shall exceed the threshold of the neural nociceptors usually involved in thermal pain. Slower fractures exhibit lower temperature elevations, and we characterise such dependency to the damaging rate. Overall, we bring experimental evidence of a novel-thermal-pathway for direct mechanical algesia. In addition, the implications of this pathway are discussed for mechanical hyperalgesia, in which a role of the cutaneous thermal sensors has priorly been suspected. We also show that thermal dissipation shall actually account for a significant portion of the total skin's fracture energy, making temperature monitoring an efficient way to detect biological damages.
机械性疼痛(或机械性痛觉过敏)既可以是一种警告我们危险的重要机制,也可以是一种需要减轻的不良医学症状。因此,全面了解导致此类疼痛的不同机制至关重要。在这项工作中,我们在红外摄像机前研究了猪皮的撕裂情况,并表明生物组织中的机械损伤能够产生足够的热量来刺激神经网络。特别是,我们报告了快速皮肤破裂周围局部温度升高可达24°C,这应超过通常参与热痛的神经伤害感受器的阈值。较慢的骨折显示出较低的温度升高,并且我们描述了这种对损伤速率的依赖性。总体而言,我们为直接机械性痛觉过敏提供了一种新的热途径的实验证据。此外,还讨论了该途径对机械性痛觉过敏的影响,此前人们曾怀疑皮肤热传感器在其中发挥作用。我们还表明,热耗散实际上应占皮肤总断裂能量的很大一部分,这使得温度监测成为检测生物损伤的一种有效方法。