Yang Shuo-Ying, Noky Jonathan, Gayles Jacob, Dejene Fasil Kidane, Sun Yan, Dörr Mathias, Skourski Yurii, Felser Claudia, Ali Mazhar Nawaz, Liu Enke, Parkin Stuart S P
Max-Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany.
Max Planck Institute for Chemical Physics of Solids, 00187 Dresden, Germany.
Nano Lett. 2020 Nov 11;20(11):7860-7867. doi: 10.1021/acs.nanolett.0c02219. Epub 2020 Oct 9.
Time-reversal-symmetry-breaking Weyl semimetals (WSMs) have attracted great attention recently because of the interplay between intrinsic magnetism and topologically nontrivial electrons. Here, we present anomalous Hall and planar Hall effect studies on CoSnS nanoflakes, a magnetic WSM hosting stacked Kagome lattice. The reduced thickness modifies the magnetic properties of the nanoflake, resulting in a 15-time larger coercive field compared with the bulk, and correspondingly modifies the transport properties. A 22% enhancement of the intrinsic anomalous Hall conductivity (AHC), as compared to bulk material, was observed. A magnetic field-modulated AHC, which may be related to the changing Weyl point separation with magnetic field, was also found. Furthermore, we showed that the PHE in a hard magnetic WSM is a complex interplay between ferromagnetism, orbital magnetoresistance, and chiral anomaly. Our findings pave the way for a further understanding of exotic transport features in the burgeoning field of magnetic topological phases.
时间反演对称性破缺的外尔半金属(WSMs)由于其本征磁性与拓扑非平凡电子之间的相互作用,近来备受关注。在此,我们展示了对CoSnS纳米薄片的反常霍尔效应和平面霍尔效应研究,CoSnS纳米薄片是一种具有堆叠 Kagome 晶格的磁性 WSM。厚度的减小改变了纳米薄片的磁性,导致矫顽场比块体材料大 15 倍,相应地也改变了输运性质。与块体材料相比,观察到本征反常霍尔电导率(AHC)提高了 22%。还发现了一种磁场调制的 AHC,这可能与外尔点间距随磁场的变化有关。此外,我们表明,硬磁 WSM 中的平面霍尔效应(PHE)是铁磁性、轨道磁阻和手征反常之间的复杂相互作用。我们的研究结果为进一步理解磁性拓扑相新兴领域中的奇异输运特性铺平了道路。