Nagpal V, Patnaik S
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, Delhi, India.
J Phys Condens Matter. 2020 Jul 1;32(40). doi: 10.1088/1361-648X/ab9859.
The concept of realization of Weyl points close to the Fermi level in materials with broken time-reversal symmetry has significant theoretical and technological ramifications. Here, we review the investigation of magneto-transport measurements in single crystals of magnetic Weyl semimetal CoSnS. We see a turn-on like behaviour followed by saturation in resistivity under magnetic field in the low temperature region which is allocated to the topological surface states. A non-saturating magnetoresistance, linear at high fields, is observed at low temperatures where applied magnetic field is transverse to the current direction. The linear negative magnetoresistance at low magnetic fields (< 0.1 T) provides evidence for time reversal symmetry breaking in CoSnS. Chiral anomaly in Weyl metallic state in CoSnSis confirmed from the breakdown of Ohm's law in the electronic transport. Shubnikov de Haas (SdH) oscillation measurement has unveiled the multiple sub-bands on the Fermi surface that corresponds to a non-trivial Berry phase. The non-linear behaviour in Hall resistivity validates the existence of two type of charge carriers with equal electron and hole densities. Strong temperature dependence of carrier mobilities reflects the systematic violation of Kohler's rule in CoSnS. Our findings open avenues to study kagome-lattice based magnetic Weyl semimetals that unfurl the basic topological aspects leading to significant ramification for spintronics.
在具有破缺时间反演对称性的材料中,实现靠近费米能级的外尔点这一概念具有重要的理论和技术意义。在此,我们回顾了对磁性外尔半金属CoSnS单晶的磁输运测量研究。我们观察到在低温区域,磁场作用下电阻率呈现出类似开启然后饱和的行为,这归因于拓扑表面态。在低温下,当外加磁场垂直于电流方向时,会观察到一种非饱和磁电阻,在高场时呈线性。低磁场(<0.1 T)下的线性负磁电阻为CoSnS中时间反演对称性破缺提供了证据。CoSnS中外尔金属态的手征反常通过电子输运中欧姆定律的失效得以证实。舒布尼科夫 - 德哈斯(SdH)振荡测量揭示了费米面的多个子带,这对应于一个非平凡的贝里相位。霍尔电阻率的非线性行为证实了存在两种载流子,其电子和空穴密度相等。载流子迁移率强烈的温度依赖性反映了CoSnS中对科勒规则的系统性违背。我们的研究结果为研究基于 Kagome 晶格的磁性外尔半金属开辟了途径,揭示了基本的拓扑方面,这对自旋电子学具有重要意义。