Sivakumar Sudhakar, Persson Axel R, Metaferia Wondwosen, Heurlin Magnus, Wallenberg Reine, Samuelson Lars, Deppert Knut, Johansson Jonas, Magnusson Martin H
Solid State Physics, Lund University, Box 118, 221 00, Lund, Sweden.
NanoLund, Lund University, 22100, Lund, Sweden.
Nanotechnology. 2021 Jan 8;32(2):025605. doi: 10.1088/1361-6528/abbc23.
Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.
对于半导体纳米线的许多应用而言,具有成本效益和资源效率的生长是必要的。我们在此介绍Aerotaxy背后的设计、操作细节和理论,Aerotaxy是一种可扩展的替代技术,能够以极高的生长速率和产量生产高质量的晶体纳米线。利用尺寸可控的金种子颗粒和有机金属前驱体,Aerotaxy可以生产出具有完美结晶度和可控尺寸的纳米线,并且该方法适合满足工业生产要求。在本报告中,我们解释了为什么Aerotaxy是制造半导体纳米线的有效方法,并阐述了我们定制的Aerotaxy系统的技术方面。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和其他表征方法进行的研究,支持了Aerotaxy确实是一种能够生产具有可重复特性的纳米线的可扩展方法这一说法。我们研究了二元和三元III-V族半导体材料体系,如砷化镓(GaAs)和砷化镓磷(GaAsP)。此外,基于计算流体动力学(CFD)方法,从实验观察中推导得出的Aerotaxy纳米线的共同特征,被用于验证Aerotaxy生长模型。我们将实验结果与模型行为进行比较,以更好地理解Aerotaxy生长过程。