Division of Solid State Physics, Lund University, 22100 Lund, Sweden.
Nature. 2012 Dec 6;492(7427):90-4. doi: 10.1038/nature11652. Epub 2012 Nov 28.
Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III-V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape--and, thus, controlled optical and electronic properties--through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III-V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.
半导体纳米线是下一代发光二极管、太阳能电池和电池的关键组成部分。要在工业规模上制造功能性纳米线基器件,需要一种高效的方法,该方法能够大规模生产具有完美结晶度、可重复和可控尺寸及材料组成以及低成本的纳米线。到目前为止,还没有报道能够满足所有这些要求的可靠方法。在这里,我们展示了如何使用基于气溶胶的生长方法——气雾化法,连续生长具有可控纳米尺寸、高度结晶度和显著生长速率的纳米线。在我们的气雾化方法中,催化尺寸选择的 Au 气溶胶颗粒诱导 GaAs 纳米线的成核和生长,其生长速率约为每秒 1 微米,比以前报道的传统基于衬底的 III-V 材料纳米线生长高 20 到 1000 倍。我们证明,该方法通过改变生长温度、时间和 Au 颗粒尺寸,可以对纳米线的尺寸和形状进行敏感和可重复的控制,从而控制其光学和电子特性。光致发光测量表明,即使是生长的纳米线也具有良好的光学性能和优异的光谱均匀性。详细的透射电子显微镜研究表明,我们的气雾化生长的纳米线沿着闪锌矿单元晶格的四个等效〈111〉B 晶向之一形成,这也是在单晶衬底上用 Au 颗粒作为种子的 III-V 纳米线的优先生长方向。所报道的连续且具有潜在高通量的方法有望大大降低高质量纳米线的生产成本,并可能使基于纳米线的器件在工业规模上的低成本制造成为可能。