Suppr超能文献

基于加速度数据和所提出的特征集的奶牛行为分类器的新设计。

The new design of cows' behavior classifier based on acceleration data and proposed feature set.

作者信息

Phi Khanh Phung Cong, Tran Duc-Tan, Duong Van Tu, Thinh Nguyen Hong, Tran Duc-Nghia

机构信息

VNU University of Engineering and Technology, 144 Xuan Thuy, Hanoi City, Vietnam.

Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi City, Vietnam.

出版信息

Math Biosci Eng. 2020 Mar 11;17(4):2760-2780. doi: 10.3934/mbe.2020151.

Abstract

Monitor and classify behavioral activities in cows is a helpful support solution for livestock based on the analysis of data from sensors attached to the animal. Accelerometers are particularly suited for monitoring cow behaviors due to small size, lightweight and high accuracy. Nevertheless, the interpretation of the data collected by such sensors when characterizing the type of behaviors still brings major challenges to developers, related to activity complexity (i.e., certain behaviors contain similar gestures). This paper presents a new design of cows' behavior classifier based on acceleration data and proposed feature set. Analysis of cow acceleration data is used to extract features for classification using machine learning algorithms. We found that with 5 features (mean, standard deviation, root mean square, median, range) and 16-second window of data (1 sample/second), classification of seven cow behaviors (including feeding, lying, standing, lying down, standing up, normal walking, active walking) achieved the overall highest performance. We validated the results with acceleration data from a public source. Performance of our proposed classifier was evaluated and compared to existing ones in terms of the sensitivity, the accuracy, the positive predictive value, and the negative predictive value.

摘要

基于对附着在奶牛身上的传感器数据进行分析,监测和分类奶牛的行为活动是一种对畜牧业有帮助的支持解决方案。加速度计因其体积小、重量轻和高精度,特别适合监测奶牛行为。然而,在表征行为类型时,对此类传感器收集的数据进行解读,仍给开发者带来重大挑战,这与活动的复杂性有关(即某些行为包含相似的姿态)。本文提出了一种基于加速度数据和所提出的特征集的奶牛行为分类器的新设计。利用机器学习算法,对奶牛加速度数据进行分析以提取用于分类的特征。我们发现,使用5个特征(均值、标准差、均方根、中位数、范围)和16秒的数据窗口(每秒1个样本),对七种奶牛行为(包括进食、躺卧、站立、卧下、站起、正常行走、活跃行走)进行分类,整体性能最高。我们用来自公开来源的加速度数据验证了结果。在灵敏度、准确率、阳性预测值和阴性预测值方面,对我们提出的分类器的性能进行了评估,并与现有分类器进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验