Suppr超能文献

具有失活突变的细菌黏附素 FimH 的构象稳定性。

Conformational stability of the bacterial adhesin, FimH, with an inactivating mutation.

机构信息

Mechanical Engineering Department, Northwestern University, Evanston, Illinois, USA.

Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.

出版信息

Proteins. 2021 Mar;89(3):276-288. doi: 10.1002/prot.26013. Epub 2020 Oct 29.

Abstract

Allostery governing two conformational states is one of the proposed mechanisms for catch-bond behavior in adhesive proteins. In FimH, a catch-bond protein expressed by pathogenic bacteria, separation of two domains disrupts inhibition by the pilin domain. Thus, tensile force can induce a conformational change in the lectin domain, from an inactive state to an active state with high affinity. To better understand allosteric inhibition in two-domain FimH (H2 inactive), we use molecular dynamics simulations to study the lectin domain alone, which has high affinity (HL active), and also the lectin domain stabilized in the low-affinity conformation by an Arg-60-Pro mutation (HL mutant). Because ligand-binding induces an allostery-like conformational change in HL mutant, this more experimentally tractable version has been proposed as a "minimal model" for FimH. We find that HL mutant has larger backbone fluctuations than both H2 inactive and HL active, at the binding pocket and allosteric interdomain region. We use an internal coordinate system of dihedral angles to identify protein regions with differences in backbone and side chain dynamics beyond the putative allosteric pathway sites. By characterizing HL mutant dynamics for the first time, we provide additional insight into the transmission of allosteric information across the lectin domain and build upon structural and thermodynamic data in the literature to further support the use of HL mutant as a "minimal model." Understanding how to alter protein dynamics to prevent the allosteric conformational change may guide drug development to prevent infection by blocking FimH adhesion.

摘要

变构调控两个构象状态是黏附蛋白中“捕获键”行为的一种提出的机制。在 FimH 中,一种由致病菌表达的“捕获键”蛋白,两个结构域的分离破坏了来自菌毛结构域的抑制作用。因此,张力可以诱导凝集素结构域发生构象变化,从无活性状态转变为高亲和力的活性状态。为了更好地理解二结构域 FimH(H2 无活性)中的变构抑制作用,我们使用分子动力学模拟来单独研究凝集素结构域,该结构域具有高亲和力(HL 活性),并且通过 Arg-60-Pro 突变稳定在低亲和力构象中(HL 突变体)。由于配体结合在 HL 突变体中诱导了一种类似变构的构象变化,因此这个更易于实验操作的版本已被提议作为 FimH 的“最小模型”。我们发现,HL 突变体在结合口袋和变构的结构域间区域的骨架波动比 H2 无活性和 HL 活性都大。我们使用二面角的内部坐标系统来识别除假定的变构途径之外,在骨架和侧链动力学上存在差异的蛋白质区域。通过首次对 HL 突变体动力学进行特征描述,我们提供了更多关于变构信息在凝集素结构域中传递的见解,并在文献中的结构和热力学数据的基础上进一步支持将 HL 突变体用作“最小模型”。了解如何改变蛋白质动力学以防止变构构象变化可能会指导药物开发,以通过阻止 FimH 黏附来预防感染。

相似文献

1
Conformational stability of the bacterial adhesin, FimH, with an inactivating mutation.
Proteins. 2021 Mar;89(3):276-288. doi: 10.1002/prot.26013. Epub 2020 Oct 29.
2
Mechanism of allosteric propagation across a β-sheet structure investigated by molecular dynamics simulations.
Proteins. 2016 Jul;84(7):990-1008. doi: 10.1002/prot.25050. Epub 2016 May 9.
4
Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose.
J Biol Chem. 2007 Aug 10;282(32):23437-46. doi: 10.1074/jbc.M702037200. Epub 2007 Jun 13.
5
RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain.
Proteins. 2020 Apr;88(4):593-603. doi: 10.1002/prot.25840. Epub 2019 Nov 5.
7
Catch-bond mechanism of the bacterial adhesin FimH.
Nat Commun. 2016 Mar 7;7:10738. doi: 10.1038/ncomms10738.
8
Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia coli.
J Biol Chem. 2008 Mar 21;283(12):7823-33. doi: 10.1074/jbc.M707804200. Epub 2008 Jan 3.
9
Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli.
Infect Immun. 2011 Oct;79(10):3895-904. doi: 10.1128/IAI.05169-11. Epub 2011 Jul 18.
10
Allosteric coupling in the bacterial adhesive protein FimH.
J Biol Chem. 2013 Aug 16;288(33):24128-39. doi: 10.1074/jbc.M113.461376. Epub 2013 Jul 2.

引用本文的文献

1
Binding site plasticity regulation of the FimH catch-bond mechanism.
Biophys J. 2023 Jul 11;122(13):2744-2756. doi: 10.1016/j.bpj.2023.05.029. Epub 2023 Jun 1.
2
A new approach for extracting information from protein dynamics.
Proteins. 2023 Feb;91(2):183-195. doi: 10.1002/prot.26421. Epub 2022 Sep 29.
4
The Chemical Structure Properties and Promoting Biofilm Activity of Exopolysaccharide Produced by .
Front Microbiol. 2022 Feb 4;12:807397. doi: 10.3389/fmicb.2021.807397. eCollection 2021.

本文引用的文献

1
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
2
Strategies for the Development of Glycomimetic Drug Candidates.
Pharmaceuticals (Basel). 2019 Apr 11;12(2):55. doi: 10.3390/ph12020055.
3
Allostery in Its Many Disguises: From Theory to Applications.
Structure. 2019 Apr 2;27(4):566-578. doi: 10.1016/j.str.2019.01.003. Epub 2019 Feb 7.
6
Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease.
Expert Opin Drug Discov. 2017 Jul;12(7):711-731. doi: 10.1080/17460441.2017.1331216. Epub 2017 Jun 2.
7
Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions.
Sci Adv. 2017 Feb 10;3(2):e1601944. doi: 10.1126/sciadv.1601944. eCollection 2017 Feb.
8
CHARMM36m: an improved force field for folded and intrinsically disordered proteins.
Nat Methods. 2017 Jan;14(1):71-73. doi: 10.1038/nmeth.4067. Epub 2016 Nov 7.
9
Mechanism of allosteric propagation across a β-sheet structure investigated by molecular dynamics simulations.
Proteins. 2016 Jul;84(7):990-1008. doi: 10.1002/prot.25050. Epub 2016 May 9.
10
Adhesive Pili in UTI Pathogenesis and Drug Development.
Pathogens. 2016 Mar 15;5(1):30. doi: 10.3390/pathogens5010030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验