Mechanical Engineering Department, Northwestern University, Evanston, Illinois, USA.
Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
Proteins. 2021 Mar;89(3):276-288. doi: 10.1002/prot.26013. Epub 2020 Oct 29.
Allostery governing two conformational states is one of the proposed mechanisms for catch-bond behavior in adhesive proteins. In FimH, a catch-bond protein expressed by pathogenic bacteria, separation of two domains disrupts inhibition by the pilin domain. Thus, tensile force can induce a conformational change in the lectin domain, from an inactive state to an active state with high affinity. To better understand allosteric inhibition in two-domain FimH (H2 inactive), we use molecular dynamics simulations to study the lectin domain alone, which has high affinity (HL active), and also the lectin domain stabilized in the low-affinity conformation by an Arg-60-Pro mutation (HL mutant). Because ligand-binding induces an allostery-like conformational change in HL mutant, this more experimentally tractable version has been proposed as a "minimal model" for FimH. We find that HL mutant has larger backbone fluctuations than both H2 inactive and HL active, at the binding pocket and allosteric interdomain region. We use an internal coordinate system of dihedral angles to identify protein regions with differences in backbone and side chain dynamics beyond the putative allosteric pathway sites. By characterizing HL mutant dynamics for the first time, we provide additional insight into the transmission of allosteric information across the lectin domain and build upon structural and thermodynamic data in the literature to further support the use of HL mutant as a "minimal model." Understanding how to alter protein dynamics to prevent the allosteric conformational change may guide drug development to prevent infection by blocking FimH adhesion.
变构调控两个构象状态是黏附蛋白中“捕获键”行为的一种提出的机制。在 FimH 中,一种由致病菌表达的“捕获键”蛋白,两个结构域的分离破坏了来自菌毛结构域的抑制作用。因此,张力可以诱导凝集素结构域发生构象变化,从无活性状态转变为高亲和力的活性状态。为了更好地理解二结构域 FimH(H2 无活性)中的变构抑制作用,我们使用分子动力学模拟来单独研究凝集素结构域,该结构域具有高亲和力(HL 活性),并且通过 Arg-60-Pro 突变稳定在低亲和力构象中(HL 突变体)。由于配体结合在 HL 突变体中诱导了一种类似变构的构象变化,因此这个更易于实验操作的版本已被提议作为 FimH 的“最小模型”。我们发现,HL 突变体在结合口袋和变构的结构域间区域的骨架波动比 H2 无活性和 HL 活性都大。我们使用二面角的内部坐标系统来识别除假定的变构途径之外,在骨架和侧链动力学上存在差异的蛋白质区域。通过首次对 HL 突变体动力学进行特征描述,我们提供了更多关于变构信息在凝集素结构域中传递的见解,并在文献中的结构和热力学数据的基础上进一步支持将 HL 突变体用作“最小模型”。了解如何改变蛋白质动力学以防止变构构象变化可能会指导药物开发,以通过阻止 FimH 黏附来预防感染。