Suppr超能文献

重组 FimH 黏附素展示了变构捕获键机制如何在没有切变力的情况下支持细菌快速而牢固的附着。

Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98115, United States.

Department of Microbiology, University of Washington, Seattle, WA 98195, United States.

出版信息

J Mol Biol. 2022 Sep 15;434(17):167681. doi: 10.1016/j.jmb.2022.167681. Epub 2022 Jun 11.

Abstract

The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an 'inactive' conformation with fast binding to mannose to an 'active' conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.

摘要

大肠杆菌的 FimH 蛋白是一种典型的两域黏附素,能够介导细菌细胞附着的变构捕获键机制,其中甘露糖结合凝集素域从快速结合甘露糖的“无活性”构象转变为缓慢从甘露糖上脱离的“活性”构象。因为机械拉伸力有利于域的分离,从而促进 FimH 的激活,因此人们认为捕获键只能以依赖于流体力的方式表现出来。在这里,我们使用具有较弱的域间相互作用的重组 FimH 变体表明,在静态、非剪切条件下,FimH 也可以快速且持续地进行变构激活。此外,似乎凝集素域构象的激活以恒定的速率发生,而与它与菌毛域或甘露糖相互作用的能力无关。然而,后两个因素控制着 FimH 失活的速度。因此,变构捕获键机制可能是一种更广泛的现象,涉及在广泛的流体动力学条件下快速且牢固的细胞-病原体附着。这种变构能够增强受体-配体相互作用的概念与传统观念完全不同,传统观念认为变构提供了一种在特定条件下关闭结合的机制。

相似文献

本文引用的文献

2
Stress-Induced Catch-Bonds to Enhance Bacterial Adhesion.应激诱导的黏附键增强细菌黏附。
Trends Microbiol. 2021 Apr;29(4):286-288. doi: 10.1016/j.tim.2020.11.009. Epub 2020 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验