Suppr超能文献

脑状态监测:当前研究与未来可能。

Brain State Monitoring: Current Research and Future Possibilities.

机构信息

is currently a senior student registered nurse anesthetist at Virginia Commonwealth University in Richmond, Virginia with an anticipated graduation date of December 2020 with a DNAP.

is currently a senior student registered nurse anesthetist at Virginia Commonwealth University pursuing a Doctor of Nurse Anesthesia Practice degree with an anticipated December 2020 graduation.

出版信息

AANA J. 2020 Oct;88(5):407-414.

Abstract

Processed electroencephalography (pEEG) devices have been used as depth of anesthesia monitors for over two decades to monitor anesthetic depth and reduce the incidence of awareness with recall (AWR). Each device has unique strengths and weaknesses. A growing body of evidence questions the ability of a pEEG-derived numerical indices to consistently, rapidly, and reliably quantify consciousness and prevent AWR in patients under general anesthesia. In light of this evidence, there are new developments in the arena of anesthetic depth monitors that may enable anesthesia providers to quickly and easily interpret real-time electroencephalography (EEG) changes using the EEG spectrogram anesthetic signature analysis method. The ease of use and speed of interpretation of the spectrogram anesthetic signature is much improved over raw EEG waveform analysis. Anesthesia providers skilled in EEG spectrogram anesthetic signature analysis may one day be able to more consistently, rapidly, and reliably quantify consciousness and prevent AWR in patients under general anesthesia.

摘要

经过处理的脑电图 (pEEG) 设备已被用作麻醉深度监测器超过二十年,以监测麻醉深度并降低术中知晓 (AWR) 的发生率。每种设备都有其独特的优缺点。越来越多的证据质疑 pEEG 衍生的数值指标是否能够一致、快速和可靠地量化意识并防止全身麻醉下患者发生 AWR。有鉴于此,麻醉深度监测领域出现了新的发展,这可能使麻醉提供者能够使用脑电图频谱图麻醉特征分析方法快速轻松地解释实时脑电图 (EEG) 变化。与原始 EEG 波形分析相比,频谱图麻醉特征的易用性和解释速度有了很大提高。经过脑电图频谱图麻醉特征分析培训的麻醉提供者有朝一日可能能够更一致、快速和可靠地量化意识并防止全身麻醉下患者发生 AWR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验