Department of Basic Medical Sciences, College of Medicine (QU Health), Qatar University, Doha, Qatar.
Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
J Neurotrauma. 2021 Feb;38(3):330-341. doi: 10.1089/neu.2020.7264. Epub 2020 Oct 27.
Peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. Its underlying neuronal mechanisms are still illusive, but pre-clinical studies using animal models of PNP including the L5-spinal nerve axotomy (L5-SNA) model, suggest that it is partly caused by excitability changes in dorsal root ganglion (DRG) neurons. L5-SNA results in two DRG neuronal groups: (1) axotomized/damaged neurons in L5- plus some in L4-DRGs, and (2) ipsilateral L4-neurons with intact/uninjured fibers intermingling with degenerating L5-fibers. The axotomized neurons are deprived of peripherally derived trophic factors and degenerate causing neuroinflammation, whereas the uninjured L4-neuorns are subject to increased trophic factors and neuroinflammation associated with Wallerian degeneration of axotomized L5-nerve fibers. Whether these two groups of DRG neurons exhibit similar or distinct electrophysiological changes after L5-SNA remains unresolved. Conflicting evidence for this may result from some studies assuming that all L4-fibers are undamaged. Here, we recorded somatic action potentials (APs) intracellularly from C- and A-fiber L4/L5 DRG neurons to examine our hypothesis that L5-SNA would induce distinct electrophysiological changes in the two populations of DRG neurons. Consistent with this hypothesis, we found (7 days post-SNA), in SNA rats with established pain hypersensitivity, slower AP kinetics in axotomized L5-neurons and faster AP kinetics in L4-nociceptive neurons including decreased rise time in Aδ-and Aβ-fiber nociceptors, and after-hyperpolarization duration in Aβ-fiber nociceptors. We also found several changes in axotomized L5-neurons but not in L4-nociceptive neurons, and some changes in L4-nociceptive but not L5-neurons. The faster AP kinetics (decreased refractory period) in L4-nociceptive neurons that are consistent with their reported hyperexcitability may lead to repetitive firing and thus provide enhanced afferent input necessary for initiating and/or maintaining PNP development. The changes in axotomized L5-neurons may contribute to the central mechanisms of PNP via enhanced neurotransmitter release in the central nervous system (CNS).
周围神经性疼痛(PNP)是一个主要的健康问题,目前缺乏有效的药物治疗。其潜在的神经元机制仍然难以捉摸,但使用包括 L5 脊神经切断术(L5-SNA)模型在内的 PNP 动物模型的临床前研究表明,它部分是由背根神经节(DRG)神经元的兴奋性变化引起的。L5-SNA 导致两种 DRG 神经元群:(1)L5 加一些 L4-DRG 中的轴突切断/损伤神经元,以及(2)与退化的 L5 纤维交织的同侧 L4 神经元,其纤维未受损。轴突切断的神经元被剥夺了外周衍生的营养因子并退化,导致神经炎症,而未受损的 L4 神经元则受到与轴突切断的 L5 神经纤维沃勒变性相关的增加的营养因子和神经炎症的影响。L5-SNA 后这两个 DRG 神经元群是否表现出相似或不同的电生理变化仍未解决。对此存在相互矛盾的证据,可能是由于一些研究假设所有 L4 纤维都未受损。在这里,我们从 C 和 A 纤维 L4/L5 DRG 神经元中记录体细胞动作电位(AP),以检验我们的假设,即 L5-SNA 会在两个 DRG 神经元群中诱导不同的电生理变化。与该假设一致,我们发现(SNA 后 7 天),在建立疼痛过敏的 SNA 大鼠中,轴突切断的 L5 神经元中的 AP 动力学更慢,L4 伤害感受神经元中的 AP 动力学更快,包括 Aδ和 Aβ伤害感受器中的上升时间减少,以及 Aβ伤害感受器中的后超极化持续时间。我们还发现了轴突切断的 L5 神经元中的几个变化,但在 L4 伤害感受神经元中没有,以及 L4 伤害感受神经元中的一些变化,但在 L5 神经元中没有。L4 伤害感受神经元中的 AP 动力学更快(减少不应期),这与它们的高兴奋性一致,可能导致重复放电,从而为启动和/或维持 PNP 发展提供增强的传入输入。轴突切断的 L5 神经元的变化可能通过增强中枢神经系统(CNS)中的神经递质释放来促进 PNP 的中枢机制。