Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, # 07-01, Matrix, Singapore, 138671, Singapore.
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
Biol Direct. 2020 Sep 29;15(1):14. doi: 10.1186/s13062-020-00266-3.
The transamidase complex is a molecular machine in the endoplasmic reticulum of eukaryotes that attaches a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins after cleaving a C-terminal propeptide with a defined sequence signal. Its five subunits are very hydrophobic; thus, solubility, heterologous expression and complex reconstruction are difficult. Therefore, theoretical approaches are currently the main source of insight into details of 3D structure and of the catalytic process.
In this work, we generated model 3D structures of the lumenal domain of human GPAA1, the M28-type metallo-peptide-synthetase subunit of the transamidase, including zinc ion and model substrate positions. In comparative molecular dynamics (MD) simulations of M28-type structures and our GPAA1 models, we estimated the metal ion binding energies with evolutionary conserved amino acid residues in the catalytic cleft. We find that canonical zinc binding sites 2 and 3 are strongest binders for Zn1 and, where a second zinc is available, sites 2 and 4 for Zn2. Zinc interaction of site 5 with Zn1 enhances upon substrate binding in structures with only one zinc. Whereas a previously studied glutaminyl cyclase structure, the best known homologue to GPAA1, binds only one zinc ion at the catalytic site, GPAA1 can sterically accommodate two. The M28-type metallopeptidases segregate into two independent branches with regard to one/two zinc ion binding modality in a phylogenetic tree where the GPAA1 family is closer to the joint origin of both groups. For GPAA1 models, MD studies revealed two large loops (flaps) surrounding the active site being involved in an anti-correlated, breathing-like dynamics.
In the light of combined sequence-analytic and phylogenetic arguments as well as 3D structural modelling results, GPAA1 is most likely a single zinc ion metallopeptidase. Two large flaps environ the catalytic site restricting access to large substrates.
This article was reviewed by Thomas Dandekar (MD) and Michael Gromiha.
转酰胺酶复合物是真核生物内质网中的一种分子机器,它在切割具有特定序列信号的 C 末端前肽后,将糖基磷脂酰肌醇(GPI)脂质锚定到底物蛋白上。其五个亚基非常疏水;因此,可溶性、异源表达和复合物重建都很困难。因此,理论方法目前是深入了解 3D 结构和催化过程细节的主要来源。
在这项工作中,我们生成了人 GPAA1 腔域、转酰胺酶的 M28 型金属肽合成酶亚基的模型 3D 结构,包括锌离子和模型底物的位置。在 M28 型结构和我们的 GPAA1 模型的比较分子动力学(MD)模拟中,我们估计了催化裂缝中进化保守氨基酸残基对金属离子结合能的影响。我们发现,典型的锌结合位点 2 和 3 是 Zn1 的最强结合物,而在有第二个锌的情况下,Zn2 的结合物是 2 和 4。在只有一个锌的情况下,结构中底物结合会增强 Zn1 与 Zn5 位点的锌相互作用。虽然以前研究过的谷氨酰胺环化酶结构,即与 GPAA1 最相似的同源物,只在催化位点结合一个锌离子,但 GPAA1 可以在空间上容纳两个锌离子。在一个系统发育树中,M28 型金属肽酶分为两个独立的分支,关于一个/两个锌离子结合模式,GPAA1 家族更接近两个组的共同起源。对于 GPAA1 模型,MD 研究表明,两个大的环(瓣)围绕活性位点,参与反相关的、类似呼吸的动力学。
综合序列分析和系统发育论据以及 3D 结构建模结果,GPAA1 很可能是一个单锌离子金属肽酶。两个大的瓣包围着催化位点,限制了对大底物的进入。
本文由 Thomas Dandekar(医学博士)和 Michael Gromiha 进行了评论。