Guo Hailing, Zhang Zhaofu, Huang Bingquan, Wang Xiting, Niu Huan, Guo Yuzheng, Li Baikui, Zheng Ruisheng, Wu Honglei
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
Nanoscale. 2020 Oct 14;12(38):20025-20032. doi: 10.1039/d0nr04725b. Epub 2020 Sep 30.
Harvesting solar energy for artificial photosynthesis is an emerging field in alternative energy research. In this work, the photocatalytic properties of InX(X = S, Se)/transition metal disulfide (MoS and WS) van der Waals heterostructures have been investigated. The calculation results indicate that these heterostructures exhibit improved photocatalytic performance over that of isolated InX or transition metal disulfide monolayers. The studied heterostructures all have type-II band alignment with holes and electrons located at the TMD and InX side, respectively. This facilitates the spatial separation of photogenerated carriers and improves the photocatalytic efficiency. The carrier mobility of the designed heterostructures can be boosted compared with the isolated monolayers, thus enhancing the carrier transport properties. Moreover, the strain-tuned heterostructures can prominently manipulate the light-harvesting capability especially from the visible light to infrared light range. Among the studied heterostructures, InSe/MoS with the suitable band edge positions, excellent transport properties and strain tolerance, and the lowest overpotential for oxygen evolution, stands out as the most promising candidate for photocatalytic applications. This work opens an avenue for the design of highly efficient heterostructure photocatalysts for solar-to-energy applications.
为人工光合作用收集太阳能是替代能源研究中的一个新兴领域。在这项工作中,研究了InX(X = S,Se)/过渡金属二硫化物(MoS和WS)范德华异质结构的光催化性能。计算结果表明,这些异质结构比孤立的InX或过渡金属二硫化物单层具有更好的光催化性能。所研究的异质结构均具有II型能带排列,空穴和电子分别位于TMD和InX一侧。这有利于光生载流子的空间分离并提高光催化效率。与孤立的单层相比,所设计的异质结构的载流子迁移率可以提高,从而增强载流子传输性能。此外,应变调节的异质结构可以显著地操纵光捕获能力,特别是从可见光到红外光范围。在所研究的异质结构中,具有合适的带边位置、优异的传输性能和应变耐受性以及最低析氧过电位的InSe/MoS,是光催化应用中最有前景的候选材料。这项工作为设计用于太阳能到能源应用的高效异质结构光催化剂开辟了一条途径。