Suppr超能文献

4D 实时容积光学相干弹性成像的深度学习。

4D deep learning for real-time volumetric optical coherence elastography.

机构信息

Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2021 Jan;16(1):23-27. doi: 10.1007/s11548-020-02261-5. Epub 2020 Sep 30.

Abstract

PURPOSE

Elasticity of soft tissue provides valuable information to physicians during treatment and diagnosis of diseases. A number of approaches have been proposed to estimate tissue stiffness from the shear wave velocity. Optical coherence elastography offers a particularly high spatial and temporal resolution. However, current approaches typically acquire data at different positions sequentially, making it slow and less practical for clinical application.

METHODS

We propose a new approach for elastography estimations using a fast imaging device to acquire small image volumes at rates of 831 Hz. The resulting sequence of phase image volumes is fed into a 4D convolutional neural network which handles both spatial and temporal data processing. We evaluate the approach on a set of image data acquired for gelatin phantoms of known elasticity.

RESULTS

Using the neural network, the gelatin concentration of unseen samples was predicted with a mean error of 0.65 ± 0.81 percentage points from 90 subsequent volumes of phase data only. We achieve a data acquisition and data processing time of under 12 ms and 22 ms, respectively.

CONCLUSIONS

We demonstrate direct volumetric optical coherence elastography from phase image data. The approach does not rely on particular stimulation or sampling sequences and allows the estimation of elastic tissue properties of up to 40 Hz.

摘要

目的

软组织的弹性在疾病的治疗和诊断过程中为医生提供了有价值的信息。已经提出了许多方法来根据剪切波速度估计组织的硬度。光学相干弹性成像提供了特别高的空间和时间分辨率。然而,目前的方法通常是在不同的位置顺序采集数据,这使得它在临床应用中速度较慢且不太实用。

方法

我们提出了一种新的弹性估计方法,使用快速成像设备以 831 Hz 的速率采集小的图像体积。将得到的一系列相位图像体积输入到一个 4D 卷积神经网络中,该网络处理空间和时间数据处理。我们在一组已知弹性的明胶体图像数据上评估了该方法。

结果

使用神经网络,仅从 90 个后续相位数据体积中,预测未见样本的明胶浓度的平均误差为 0.65 ± 0.81 个百分点。我们实现了不到 12 毫秒和 22 毫秒的数据采集和数据处理时间。

结论

我们展示了来自相位图像数据的直接容积光学相干弹性成像。该方法不依赖于特定的刺激或采样序列,并允许估计高达 40 Hz 的弹性组织特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f670/7822782/c27d9868702a/11548_2020_2261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验