Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts.
J Neurophysiol. 2020 Dec 1;124(6):1986-1994. doi: 10.1152/jn.00611.2019. Epub 2020 Sep 30.
We compared voluntary oscillatory sway for eight subjects tested in 1.8- and 1- gravito-inertial force (GIF) levels of parabolic flight. Subjects performed voluntary forward-backward (FB) and lateral left-right (LR) swaying as the forces and moments under the soles of each foot were measured. We calculated the experimental values of three parameters: two ankle stiffness parameters K and K acting in orthogonal FB and LR directions and one parameter K related to leg pivot shifting. Simulations of the engaged leg model (Bakshi A, DiZio P, Lackner JR. 121: 2042-2060, 2019; Bakshi A, DiZio P, Lackner JR. 121: 2028-2041, 2019) correctly predicted the experimentally determined stability bounds of upright balance and also the scaling of the postural parameters as a function of GIF magnitude. The effective stiffness, K, at the ankles played the primary role to prevent falling in FB swaying and both model predictions, and experimental data showed K to scale up in proportion to GIF magnitude. For LR swaying, the model predicted a 3:4 scaling of anterior-posterior stiffness to change in GIF magnitude, which was borne out by the experimental data. Simulations predict stability (nonfalling) not to depend on lateral stiffness, K, which was experimentally found not to depend on the GIF magnitude. Both model and experiment showed that the geometry-dependent pivot shift parameter K was invariant to a change in GIF magnitude. Thus the ELM explains voluntary sway and balance in altered GIF magnitude conditions, rotating environments with Coriolis perturbations of sway, as well as normal terrestrial conditions. A nonparallel leg model of balance, the engaged leg model (ELM), was previously developed to characterize adaptive balance control in a rotating environment. Here we show the ELM also explains sway in hypergravity. It predicts the changes in balance control parameters with changes in gravity. ELM is currently the only balance model applicable to artificial and hypergravity conditions. ELM can also be applied to terrestrial clinical situations for pathologies that generate postural asymmetries.
我们比较了 8 位受试者在 1.8 和 1 个重力惯性力(GIF)级别的抛物线飞行中的自愿摆动。当测量每只脚底的力和力矩时,受试者进行了向前-向后(FB)和侧向-左右(LR)摆动。我们计算了三个参数的实验值:两个作用在正交 FB 和 LR 方向上的踝关节刚度参数 K 和 K,以及一个与腿部枢轴移位有关的参数 K。参与腿模型(Bakshi A、DiZio P、Lackner JR。121:2042-2060, 2019;Bakshi A、DiZio P、Lackner JR。121:2028-2041, 2019)的模拟正确预测了直立平衡的实验确定的稳定性边界,并且还预测了姿势参数作为 GIF 幅度的函数的缩放。踝关节处的有效刚度 K 在防止 FB 摆动时跌倒方面起着主要作用,模型预测和实验数据均表明 K 与 GIF 幅度成比例增加。对于 LR 摆动,模型预测了前后刚度与 GIF 幅度变化的 3:4 缩放,实验数据证实了这一点。模拟预测稳定性(不跌倒)不依赖于侧向刚度 K,实验发现 K 不依赖于 GIF 幅度。模型和实验均表明,与几何形状相关的枢轴移位参数 K 不随 GIF 幅度的变化而变化。因此,ELM 解释了在改变的 GIF 幅度条件下、旋转环境中带有摇摆的科里奥利力干扰以及正常的陆地条件下的自愿摇摆和平衡。先前开发了一种非平行腿平衡模型,即参与腿模型(ELM),用于描述旋转环境中的自适应平衡控制。在这里,我们展示了 ELM 也解释了超重下的摇摆。它预测了平衡控制参数随重力变化的变化。ELM 目前是唯一适用于人工和超重条件的平衡模型。ELM 还可以应用于产生姿势不对称的陆地临床情况。