Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
Materials Analysis Center, Fundamental Technology Research and Development Division 2, R&D Center, Sony Corporation, Atsugi, Japan.
PLoS One. 2020 Sep 30;15(9):e0239933. doi: 10.1371/journal.pone.0239933. eCollection 2020.
Crystal structure prediction has been one of the fundamental and challenging problems in materials science. It is computationally exhaustive to identify molecular conformations and arrangements in organic molecular crystals due to complexity in intra- and inter-molecular interactions. From a geometrical viewpoint, specific types of organic crystal structures can be characterized by ellipsoid packing. In particular, we focus on aromatic systems which are important for organic semiconductor materials. In this study, we aim to estimate the ellipsoidal molecular shapes of such crystals and predict them from single molecular descriptors. First, we identify the molecular crystals with molecular centroid arrangements that correspond to affine transformations of four basic cubic lattices, through topological analysis of the dataset of crystalline polycyclic aromatic molecules. The novelty of our method is that the topological data analysis is applied to arrangements of molecular centroids intead of those of atoms. For each of the identified crystals, we estimate the intracrystalline molecular shape based on the ellipsoid packing assumption. Then, we show that the ellipsoidal shape can be predicted from single molecular descriptors using a machine learning method. The results suggest that topological characterization of molecular arrangements is useful for structure prediction of organic semiconductor materials.
晶体结构预测一直是材料科学中的一个基本和具有挑战性的问题。由于分子内和分子间相互作用的复杂性,确定有机分子晶体中的分子构象和排列在计算上是非常繁琐的。从几何角度来看,特定类型的有机晶体结构可以用椭球堆积来描述。特别是,我们关注的是对有机半导体材料很重要的芳香族体系。在这项研究中,我们旨在估计这些晶体的椭球分子形状,并从单个分子描述符来预测它们。首先,我们通过对晶体状多环芳烃分子数据集的拓扑分析,确定了具有对应于四个基本立方晶格仿射变换的分子质心排列的分子晶体。我们方法的新颖之处在于拓扑数据分析应用于分子质心的排列,而不是原子的排列。对于每个确定的晶体,我们基于椭球堆积假设估计晶体内部的分子形状。然后,我们表明可以使用机器学习方法从单个分子描述符来预测椭球形状。结果表明,分子排列的拓扑特征对于有机半导体材料的结构预测是有用的。