Suppr超能文献

基于数据驱动和拓扑映射的方法对稳定的分子晶体水合物进行预测。

A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates.

机构信息

Solid State Chemistry, Research & Development, AbbVie Inc., North Chicago, IL 60064.

Department of Chemistry, New York University, New York, NY 10003.

出版信息

Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2204414119. doi: 10.1073/pnas.2204414119. Epub 2022 Oct 17.

Abstract

Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates of organic molecular crystals are immensely challenging due to the extensive search space of different water contents, host molecular placements throughout the crystal, and internal molecular conformations. However, the dry frameworks of these hydrates, especially for nonstoichiometric or isostructural dehydrates, can often be predicted from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by developments in the field of drug binding, we introduce an efficient data-driven and topologically aware approach for predicting organic molecular crystal hydrate structures through a mapping of water positions within the crystal structure. The method does not require specification of water content and can, therefore, predict stoichiometric, fractional, and nonstoichiometric hydrate structures. This approach, which we term a (MACH), establishes a set of rules for systematic determination of favorable positions for water insertion within predicted or experimental crystal structures based on considerations of the chemical features of local environments and void regions. The proposed approach is tested on hydrates of three pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and void environments characteristic of hydrate structures. Overall, we show that our mapping approach introduces an advance in the efficient performance of hydrate CSP through generation of stable hydrate stoichiometries at low cost and should be considered an integral component for CSP workflows.

摘要

由于不同含水量、整个晶体中主体分子的位置以及内部分子构象的广泛搜索空间,预测有机分子晶体的化学计量、分数或非化学计量水合物的结构极具挑战性。然而,这些水合物的干燥骨架,特别是对于非化学计量或同构脱水物,可以通过标准的无水晶体结构预测 (CSP) 协议从标准无水晶体结构预测中预测出来。受药物结合领域发展的启发,我们通过在晶体结构内映射水分子位置,引入了一种高效的数据驱动和拓扑感知方法,用于预测有机分子晶体水合物的结构。该方法不需要指定含水量,因此可以预测化学计量、分数和非化学计量水合物的结构。这种方法,我们称之为 (MACH),它建立了一套规则,用于根据局部环境和空隙区域的化学特征,系统地确定在预测或实验晶体结构中插入水分子的有利位置。所提出的方法在三种具有不同晶体堆积模式和空隙环境特征的药用相关化合物的水合物上进行了测试,这些特征是水合物结构的特征。总的来说,我们表明,我们的映射方法通过以低成本生成稳定的水合计量比,在高效的水合 CSP 性能方面取得了进展,并且应该被认为是 CSP 工作流程的一个组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69af/9618139/8dccf080d41b/pnas.2204414119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验