Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.
Samsung Advanced Institute of Technology, Suwon, 16678, Korea.
Sci Rep. 2020 Sep 30;10(1):16166. doi: 10.1038/s41598-020-73300-z.
The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when L- and D-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life.
生物体内氨基酸的手性是生命现象中的一大奥秘。为了理解氨基酸的手性识别,我们使用扫描隧道显微镜研究了氨基酸色氨酸(Trp)分子在 Au(111)上的自组装。早期的实验表明,尽管使用了两种对映异构体的混合物,但氨基酸的自组装中只存在同手性结构。在我们的研究中,我们证明了当 L-和 D-色氨酸分子混合形成在 Au 表面上的自组装时,异手性结构可以在能量上得到优先。使用密度泛函理论计算,我们表明吲哚侧链与 Au 表面强烈相互作用,这将系统有效地降低到二维,从而失去手性识别。我们的研究为理解生命中氨基酸分子的手性识别提供了重要的见解。