Suppr超能文献

在表面上定制手性:超越分子手性。

Tailoring homochirality at surfaces: going beyond molecular handedness.

机构信息

Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, UK.

出版信息

J Am Chem Soc. 2011 Oct 12;133(40):15992-6000. doi: 10.1021/ja202986s. Epub 2011 Sep 16.

Abstract

Chirality can be bestowed upon a surface by the adsorption of molecules and is usually discussed in terms of the molecular handedness. However, the adsorption process often leads to a new manifestation of chirality in the form of the adsorption footprint, which can also be chiral and generate mirror-images in 2-D. Therefore, in describing the chirality of the interface, one must consider both the handedness and the adsorption 'footedness' of the system. Specifically, the creation of a truly homochiral surface must ensure that a single chirality is expressed for each aspect, and requires not only the control of molecule handedness but also direct control over footedness. Here, we demonstrate the ability to engineer homochiral footedness by a structural modification of enantiopure (S)-proline, which normally creates a (4 × 2) organization on a Cu(110) surface with heterochiral footedness. This modification of proline via the addition of a double bond within the pyrrolidine ring, yielding 3-pyrroline-2-carboxylic acid (PCA), is sufficient to drive the footprints of the entire (4 × 2) assembly from heterochiral to homochiral, leading to the creation of a truly homochiral interface The effects of modifications upon the footprint arrangements were characterized at the single-molecule level by scanning tunnelling microscopy, reflection absorption infrared spectroscopy and periodic density functional theory calculations. The control of adsorption footprints is not only pivotal to tailoring chirality at surfaces but also plays a key role in dictating the organization, the outward facing functionalities and the response of the organic-inorganic interface.

摘要

手性可以通过分子的吸附赋予表面,通常是根据分子的手性来讨论的。然而,吸附过程通常会导致吸附足迹以新的形式表现出手性,这种吸附足迹也可以是手性的,并在二维空间中产生镜像。因此,在描述界面的手性时,必须考虑系统的手性和吸附“足迹”。具体来说,要创建真正的同手性表面,必须确保每个方面都表达出单一的手性,这不仅需要控制分子的手性,还需要直接控制足迹。在这里,我们通过对手性(S)-脯氨酸进行结构修饰,展示了工程同手性足迹的能力,这种修饰通常在手性不同的 Cu(110)表面上形成(4×2)组织。脯氨酸通过在吡咯烷环内添加双键进行修饰,生成 3-吡咯啉-2-羧酸(PCA),足以驱动整个(4×2)组装的足迹从异手性转变为同手性,从而创建真正的同手性界面。通过扫描隧道显微镜、反射吸收红外光谱和周期性密度泛函理论计算,在单分子水平上对修饰对足迹排列的影响进行了表征。吸附足迹的控制不仅对表面手性的调整至关重要,而且对有机-无机界面的组织、面向外的功能和响应也起着关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验