用于液滴识别与传输的仿生各向异性表面的可逆结构工程

Reversible Structure Engineering of Bioinspired Anisotropic Surface for Droplet Recognition and Transportation.

作者信息

Li Qian, Li Lijun, Shi Kui, Yang Baisong, Wang Xin, Shi Zhekun, Tan Di, Meng Fandong, Liu Quan, Hu Shiqi, Lei Yifeng, Liu Sheng, Xue Longjian

机构信息

School of Power and Mechanical Engineering, The Institute of Technological Science Wuhan University South Donghu Road 8 Wuhan 430072 China.

出版信息

Adv Sci (Weinh). 2020 Jul 26;7(18):2001650. doi: 10.1002/advs.202001650. eCollection 2020 Sep.

Abstract

Surfaces with tunable liquid adhesion have aroused great attention in past years. However, it remains challenging to endow a surface with the capability of droplet recognition and transportation. Here, a bioinspired surface, termed as TMAS, is presented that is inspired by isotropic lotus leaves and anisotropic butterfly wings. The surface is prepared by simply growing a triangular micropillar array on the pre-stretched thin poly(dimethylsiloxane) (PDMS) film. The regulation of mechanical stress in the PDMS film allows the fine tuning of structural parameters of the micropillar array reversibly, which results in the instantaneous, in situ switching between isotropic and various degrees of anisotropic droplet adhesions, and between strong adhesion and directional sliding of water droplets. TMAS can thus be used for robust droplet transportation and recognition of acids, bases, and their pH strengths. The results here could inspire the design of robust sensor techniques.

摘要

具有可调液体粘附性的表面在过去几年中引起了极大关注。然而,赋予表面液滴识别和运输能力仍然具有挑战性。在此,提出了一种受生物启发的表面,称为TMAS,它受到各向同性荷叶和各向异性蝴蝶翅膀的启发。该表面通过在预拉伸的聚二甲基硅氧烷(PDMS)薄膜上简单地生长三角形微柱阵列来制备。PDMS薄膜中机械应力的调节允许可逆地微调微柱阵列的结构参数,这导致各向同性和不同程度的各向异性液滴粘附之间,以及水滴的强粘附和定向滑动之间的即时、原位切换。因此,TMAS可用于可靠的液滴运输以及酸、碱及其pH强度的识别。这里的结果可能会激发强大的传感器技术的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d53/7509748/32119dd78b91/ADVS-7-2001650-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索