Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074, Japan.
Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
Plant Mol Biol. 2020 Dec;104(6):575-582. doi: 10.1007/s11103-020-01061-4. Epub 2020 Sep 30.
In the ros1-defective mutant, DREB1A repression by the transgene-induced promoter methylation of ice1-1 became inheritable across generations even in the absence of the causative transgene NICE1. Transgene silencing (TGS) is a widely observed event during plant bioengineering, which is presented as a gradual decrease in ectopic gene expression across generations and occasionally coupled with endogenous gene silencing based on DNA sequence similarity. TGS is known to be established by guided DNA methylation machinery. However, the machinery underlying gene recovery from TGS has not been fully elucidated. We previously reported that in ice1-1 outcross descendants, the expressional repression and recovery of DREB1A/CBF3 were instantly achieved by a newly discovered NICE1 transgene, instead of the formerly proposed ice1-1 mutation in the ICE1 gene. The plants harboring NICE1 produced small RNAs targeting and causing the DREB1A promoter to be hypermethylated and silenced. To analyze the role of the plant-specific active DNA demethylase REPRESSOR OF SILENCING 1 (ROS1) in instant DREB1A recovery, we propagated the NICE1-segregating population upon ros1 dysfunction and evaluated the gene expression and DNA methylation levels of DREB1A through generations. Our results showed that the epigenetic DREB1A repression was substantially sustained in subsequent generations even without NICE1 and stably inherited across generations. Consistent with the gene expression results, only incomplete DNA methylation removal was detected in the same generations. These results indicate that a novel inheritable epiallele emerged by the ros1 dysfunction. Overall, our study reveals the important role of ROS1 in the inheritability of TGS-associated gene repression.
在 ros1 缺陷突变体中,即使在不存在引起 NICE1 转座子的情况下,ice1-1 的转基因诱导启动子甲基化对 DREB1A 的抑制作用也可遗传给后代。转基因沉默(TGS)是植物生物工程中广泛观察到的事件,表现为外源基因表达随代际逐渐降低,偶尔还会与基于 DNA 序列相似性的内源基因沉默相关。TGS 被认为是由指导 DNA 甲基化机制建立的。然而,从 TGS 中恢复基因的机制尚未完全阐明。我们之前报道过,在 ice1-1 杂交后代中,DREB1A/CBF3 的表达抑制和恢复是通过新发现的 NICE1 转座子瞬时实现的,而不是以前 ICE1 基因中 ice1-1 突变所提出的。携带 NICE1 的植物产生靶向并导致 DREB1A 启动子超甲基化和沉默的小 RNA。为了分析植物特异性活性 DNA 去甲基酶沉默抑制物 1(ROS1)在 DREB1A 瞬时恢复中的作用,我们在 ros1 功能障碍时繁殖了 NICE1 分离群体,并通过代际评估 DREB1A 的基因表达和 DNA 甲基化水平。我们的结果表明,即使没有 NICE1,随后的代际中表观遗传 DREB1A 抑制也会持续存在,并稳定遗传给后代。与基因表达结果一致,仅检测到相同代际中不完全的 DNA 去甲基化。这些结果表明,ros1 功能障碍导致了新的可遗传表观等位基因的出现。总体而言,我们的研究揭示了 ROS1 在 TGS 相关基因抑制的可遗传性中的重要作用。