Suppr超能文献

DEMETER 的催化核心指导. 中的活性 DNA 去甲基化。

The catalytic core of DEMETER guides active DNA demethylation in .

机构信息

Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695.

Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17563-17571. doi: 10.1073/pnas.1907290116. Epub 2019 Aug 13.

Abstract

The DEMETER (DME) DNA glycosylase demethylates the maternal genome in the central cell prior to fertilization and is essential for seed viability. DME preferentially targets small transposons that flank coding genes, influencing their expression and initiating plant gene imprinting. DME also targets intergenic and heterochromatic regions, but how it is recruited to these differing chromatin landscapes is unknown. The C-terminal half of DME consists of 3 conserved regions required for catalysis in vitro. We show that this catalytic core guides active demethylation at endogenous targets, rescuing developmental and genomic hypermethylation phenotypes. However, without the N terminus, heterochromatin demethylation is significantly impeded, and abundant CG-methylated genic sequences are ectopically demethylated. Comparative analysis revealed that the conserved DME N-terminal domains are present only in flowering plants, whereas the domain architecture of DME-like proteins in nonvascular plants mainly resembles the catalytic core, suggesting that it might represent the ancestral form of the 5mC DNA glycosylase found in plant lineages. We propose a bipartite model for DME protein action and suggest that the DME N terminus was acquired late during land plant evolution to improve specificity and facilitate demethylation at heterochromatin targets.

摘要

DEME(DME)DNA 糖苷酶在受精前使母本基因组中的中央细胞去甲基化,对于种子活力是必不可少的。DME 优先靶向侧翼编码基因的小转座子,影响其表达并启动植物基因印记。DME 还靶向基因间和异染色质区域,但它如何被招募到这些不同的染色质景观尚不清楚。DME 的 C 末端由体外催化所需的 3 个保守区域组成。我们表明,这个催化核心指导内源性靶标进行活性去甲基化,挽救发育和基因组过度甲基化表型。然而,如果没有 N 端,异染色质去甲基化就会受到严重阻碍,大量 CG 甲基化的基因序列会异位去甲基化。比较分析表明,保守的 DME N 端结构域仅存在于开花植物中,而在非维管束植物中的 DME 样蛋白的结构域架构主要类似于催化核心,这表明它可能代表植物谱系中发现的 5mC DNA 糖苷酶的原始形式。我们提出了 DME 蛋白作用的二分模型,并提出 DME N 端是在陆地植物进化过程中晚期获得的,以提高特异性并促进异染色质靶标的去甲基化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb3/6717269/124bba9cbbbd/pnas.1907290116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验