Suppr超能文献

从模糊二值图像中恢复椭圆

Ellipse Recovery From Blurred Binary Images.

作者信息

Zamani Hojatollah, Amini Arash

出版信息

IEEE Trans Image Process. 2021;30:2697-2707. doi: 10.1109/TIP.2020.3026866. Epub 2021 Feb 10.

Abstract

In this paper, we address the problem of ellipse recovery from blurred shape images. A shape image is a binary-valued (0/1) image in continuous-domain that represents one or multiple shapes. In general, the shapes can also be overlapping. We assume to observe the shape image through finitely many blurred samples, where the 2D blurring kernel is assumed to be known. The samples might also be noisy. Our goal is to detect and locate ellipses within the shape image. Our approach is based on representing an ellipse as the zero-level-set of a bivariate polynomial of degree 2. Indeed, similar to the theory of finite rate of innovation (FRI), we establish a set of linear equations (annihilation filter) between the image moments and the coefficients of the bivariate polynomial. For a single ellipse, we show that the image can be perfectly recovered from only 6 image moments (improving the bound in [Fatemi et al., 2016]). For multiple ellipses, instead of searching for a polynomial of higher degree, we locally search for single ellipses and apply a pooling technique to detect the ellipse. As we always search for a polynomial of degree 2, this approach is more robust against additive noise compared to the strategy of searching for a polynomial of higher degree (detecting multiple ellipses at the same time). Besides, this approach has the advantage of detecting ellipses even when they intersect and some parts of the boundaries are lost. Simulation results using both synthetic and real world images (red blood cells) confirm superiority of the performance of the proposed method against the existing techniques.

摘要

在本文中,我们解决了从模糊形状图像中恢复椭圆的问题。形状图像是连续域中的二值(0/1)图像,它表示一个或多个形状。一般来说,这些形状也可能相互重叠。我们假设通过有限数量的模糊样本观察形状图像,其中二维模糊核被认为是已知的。样本也可能有噪声。我们的目标是在形状图像中检测并定位椭圆。我们的方法基于将椭圆表示为二次二元多项式的零水平集。实际上,类似于有限创新率(FRI)理论,我们在图像矩和二元多项式的系数之间建立了一组线性方程(湮灭滤波器)。对于单个椭圆,我们表明仅从6个图像矩就可以完美恢复图像(改进了[Fatemi等人,2016]中的界限)。对于多个椭圆,我们不是寻找更高次的多项式,而是局部搜索单个椭圆并应用合并技术来检测椭圆。由于我们总是搜索二次多项式,与搜索更高次多项式(同时检测多个椭圆)的策略相比,这种方法对加性噪声更具鲁棒性。此外,即使椭圆相交且部分边界丢失,这种方法也具有检测椭圆的优势。使用合成图像和真实世界图像(红细胞)的仿真结果证实了所提方法相对于现有技术在性能上的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验