Suppr超能文献

使用有限创新率采样原理进行椭圆拟合。

Ellipse Fitting Using the Finite Rate of Innovation Sampling Principle.

出版信息

IEEE Trans Image Process. 2016 Mar;25(3):1451-64. doi: 10.1109/TIP.2015.2511580.

Abstract

Standard approaches for ellipse fitting are based on the minimization of algebraic or geometric distance between the given data and a template ellipse. When the data are noisy and come from a partial ellipse, the state-of-the-art methods tend to produce biased ellipses. We rely on the sampling structure of the underlying signal and show that the x - and y -coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals, and that their parameters are estimable from partial data. We consider both uniform and nonuniform sampling scenarios in the presence of noise and show that the data can be modeled as a sum of random amplitude-modulated complex exponentials. A low-pass filter is used to suppress noise and approximate the data as a sum of weighted complex exponentials. The annihilating filter used in FRI approaches is applied to estimate the sampling interval in the closed form. We perform experiments on simulated and real data, and assess both objective and subjective performances in comparison with the state-of-the-art ellipse fitting methods. The proposed method produces ellipses with lesser bias. Furthermore, the mean-squared error is lesser by about 2 to 10 dB. We show the applications of ellipse fitting in iris images starting from partial edge contours, and to free-hand ellipses drawn on a touch-screen tablet.

摘要

标准的椭圆拟合方法基于给定数据与模板椭圆之间的代数或几何距离最小化。当数据存在噪声且仅来自部分椭圆时,最先进的方法往往会产生有偏差的椭圆。我们依赖于基础信号的采样结构,并表明椭圆的 x 和 y 坐标函数是有限率创新(FRI)信号,并且可以从部分数据中估计其参数。我们考虑了存在噪声时的均匀和非均匀采样情况,并表明数据可以建模为随机幅度调制复指数的和。低通滤波器用于抑制噪声,并将数据近似为加权复指数的和。FRI 方法中使用的消隐滤波器用于以闭合形式估计采样间隔。我们在模拟和真实数据上进行了实验,并与最先进的椭圆拟合方法进行了客观和主观性能评估。与最先进的椭圆拟合方法相比,所提出的方法产生的椭圆偏差更小。此外,均方误差大约小 2 到 10dB。我们展示了从部分边缘轮廓开始的虹膜图像以及在触摸屏幕平板电脑上绘制的自由手椭圆的椭圆拟合应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验