Suppr超能文献

时频最大信息系数方法及其在皮质运动功能耦合中的应用。

Time-Frequency Maximal Information Coefficient Method and its Application to Functional Corticomuscular Coupling.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2515-2524. doi: 10.1109/TNSRE.2020.3028199. Epub 2020 Nov 6.

Abstract

An important challenge in the study of functional corticomuscular coupling (FCMC) is an accurate capture of the coupling relationship between the cerebral cortex and the effector muscle. The coherence method is a linear analysis method, which has certain limitations in further revealing the nonlinear coupling between neural signals. Although mutual information (MI) and transfer entropy (TE) based on information theory can capture both linear and nonlinear correlations, the equitability of these algorithms is ignored and the nonlinear components of the correlation cannot be separated. The maximal information coefficient (MIC) is a suitable method to measure the coupling between neurophysiological signals. This study extends the MIC to the time-frequency domain, named time-frequency maximal information coefficient (TFMIC), to explore the FCMC in a specific frequency band. The effectiveness, equitability, and robustness of the algorithm on the simulation data was verified and compared with coherence, TE- and MI- based methods. Simulation results showed that the TFMIC could accurately detect the coupling for different functional relationships at low noise levels. The dorsiflexion experimental results revealed that the beta-band (14-30 Hz) significant coupling was observed at channels Cz, C4, FC4, and FCz. Additionally, the results showed that the coupling was higher in the alpha-band (8-13 Hz) and beta-band (14-30 Hz) than in the gamma-band (31-45 Hz). This might be related to a transition between sensorimotor states. Specifically, the nonlinear component of FCMC was also observed at channels Cz, C4, FC4, and FCz. This study expanded the research on nonlinear coupling components in FCMC.

摘要

在研究功能皮质肌肉耦合(FCMC)时,一个重要的挑战是准确捕捉大脑皮层和效应肌肉之间的耦合关系。相干方法是一种线性分析方法,在进一步揭示神经信号之间的非线性耦合方面具有一定的局限性。尽管基于信息论的互信息(MI)和传递熵(TE)可以捕捉线性和非线性相关,但这些算法的均衡性被忽略了,相关的非线性成分无法分离。最大信息系数(MIC)是测量神经生理信号之间耦合的合适方法。本研究将 MIC 扩展到时频域,命名为时频最大信息系数(TFMIC),以探索特定频带中的 FCMC。该算法在模拟数据上的有效性、均衡性和鲁棒性得到了验证,并与相干、TE 和 MI 方法进行了比较。模拟结果表明,在低噪声水平下,TFMIC 可以准确检测出不同功能关系的耦合。背屈实验结果表明,在 Cz、C4、FC4 和 FCz 通道中观察到β波段(14-30 Hz)的显著耦合。此外,结果表明,α波段(8-13 Hz)和β波段(14-30 Hz)的耦合高于γ波段(31-45 Hz)。这可能与运动感觉状态的转变有关。具体来说,在 Cz、C4、FC4 和 FCz 通道中也观察到了 FCMC 的非线性成分。本研究扩展了 FCMC 中非线性耦合成分的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验