IEEE J Biomed Health Inform. 2024 Feb;28(2):812-822. doi: 10.1109/JBHI.2023.3332657. Epub 2024 Feb 5.
Functional corticomuscular coupling (FCMC) probes multi-level information communication in the sensorimotor system. The canonical Coherence (caCOH) method has been leveraged to measure the FCMC between two multivariate signals within the single scale. In this paper, we propose the concept of multiscale canonical Coherence (MS-caCOH) to disentangle complex multi-layer information and extract coupling features in multivariate spaces from multiple scales. Then, we verified the reliability and effectiveness of MS-caCOH on two types of data sets, i.e., a synthetic multivariate data set and a real-world multivariate data set. Our simulation results showed that compared with caCOH, MS-caCOH enhanced coupling detection and achieved lower pattern recovery errors at multiple frequency scales. Further analysis on experimental data demonstrated that the proposed MS-caCOH method could also capture detailed multiscale spatial-frequency characteristics. This study leverages the multiscale analysis framework and multivariate method to give a new insight into corticomuscular coupling analysis.
功能皮质肌肉耦合(FCMC)探测感觉运动系统中的多层次信息通信。经典相干(caCOH)方法已被用于在单一尺度内测量两个多变量信号之间的 FCMC。在本文中,我们提出了多尺度经典相干(MS-caCOH)的概念,以解耦复杂的多层信息,并从多个尺度的多变量空间中提取耦合特征。然后,我们在两种类型的数据集上验证了 MS-caCOH 的可靠性和有效性,即合成多变量数据集和真实世界多变量数据集。我们的模拟结果表明,与 caCOH 相比,MS-caCOH 增强了耦合检测,并在多个频率尺度上实现了更低的模式恢复误差。对实验数据的进一步分析表明,所提出的 MS-caCOH 方法还可以捕获详细的多尺度空间频率特征。本研究利用多尺度分析框架和多元方法,为皮质肌肉耦合分析提供了新的见解。