Materials Department, University of California, Santa Barbara, CA, USA.
California NanoSystems Institute, University of California, Santa Barbara, CA, USA.
Science. 2020 Oct 2;370(6512):95-101. doi: 10.1126/science.aba3722.
Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.
难加工多主元合金(MPEAs)是满足苛刻结构应用需求的有前途的材料,但需要从根本上为这些合金的体心立方(bcc)变体提供不同的塑性变形途径。我们展示了 bcc MPEA MoNbTi 在均匀塑性变形性和强度方面的理想结合,这得益于位错必须通过的坚固原子环境。我们对位错运动的观察和原子计算揭示了非螺旋位错和大量用于位错滑移的滑移面的出乎意料的主导地位。这种行为证实了解释类似合金异常高温强度的理论。我们的结果为能够在整个温度范围内表现的材料的缺陷意识合金设计策略提供了新的视角。