Zhou Yang, Liu Danye, Liu Zong, Feng Ligang, Yang Jun
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China.
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):47065-47075. doi: 10.1021/acsami.0c15074. Epub 2020 Oct 2.
Metal-support interaction enhancement is critical in the fuel cell catalyst design and fabrication. Herein, taking the Pd@CeO system as an example, we revealed the substrate morphology coupling effect and the thermal annealing-induced Pd-O-Ce linkage enhancement in the improved catalytic capability for formic acid electrooxidation. Three well-defined CeO nanocrystals were employed to support Pd nanoparticles, and the best catalytic performance for formic acid oxidation and anti-CO poisoning ability was found on CeO plates because of the high oxygen vacancy, Ce, and more Pd-O-Ce linkages resulting from the more edge/corner defects. This interaction of Pd-O-Ce linkages could be largely enhanced by thermal annealing in the N atmosphere, as confirmed by a series of crystal structures, surface chemical state, and Raman analysis because the oxygen vacancies and lattice oxygen resulting from the oxygen atoms leaching from the CeO lattice would trap the mobile Pd nanocrystals by forming strengthened Pd-O-Ce linkages. Due to the high oxygen vacancy and strong Pd-O-Ce linkages, largely increased catalytic activity and stability, catalytic kinetics, and rapid charge transfer were found for all the thermal annealed Pd@CeO catalysts. A nearly 1.93-fold enhancement in the mass activity was achieved on the Pd@CeO-plate catalysts demonstrating the significance of Pd-O-Ce linkage enhancement. The formation mechanism of Pd-O-Ce linkage was also probed, and a valid Pd-O-Ce linkage can only be formed in the inert atmosphere because of the reaction between metallic Pd and CeO. This finding sheds some light on the more efficient catalyst interface construction and understanding for the fuel cell catalysis via metal-support interaction enhancement.
金属-载体相互作用的增强在燃料电池催化剂的设计与制备中至关重要。在此,以Pd@CeO体系为例,我们揭示了在甲酸电氧化催化性能提升方面,基底形态耦合效应以及热退火诱导的Pd-O-Ce键增强。采用三种形貌明确的CeO纳米晶体来负载Pd纳米颗粒,由于CeO平板具有高氧空位、更多的Ce以及因更多边缘/角落缺陷而产生的更多Pd-O-Ce键,所以在CeO平板上发现了对甲酸氧化的最佳催化性能和抗CO中毒能力。一系列晶体结构、表面化学状态和拉曼分析证实,在N气氛中进行热退火可大幅增强Pd-O-Ce键的这种相互作用,因为从CeO晶格中浸出的氧原子产生的氧空位和晶格氧会通过形成强化的Pd-O-Ce键来捕获移动的Pd纳米晶体。由于高氧空位和强Pd-O-Ce键,所有热退火的Pd@CeO催化剂都表现出大幅提高的催化活性和稳定性、催化动力学以及快速的电荷转移。在Pd@CeO-平板催化剂上实现了质量活性近1.93倍的增强,证明了Pd-O-Ce键增强的重要性。还探究了Pd-O-Ce键的形成机制,由于金属Pd与CeO之间的反应,有效的Pd-O-Ce键只能在惰性气氛中形成。这一发现为通过增强金属-载体相互作用来构建更高效的催化剂界面以及理解燃料电池催化提供了一些启示。