School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Instituto Cavanilles de Biodiversidad i Biología Evolutiva, Universitat de València, C/ Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain.
School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Instituto Cavanilles de Biodiversidad i Biología Evolutiva, Universitat de València, C/ Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain.
Curr Biol. 2020 Dec 7;30(23):4808-4813.e3. doi: 10.1016/j.cub.2020.09.031. Epub 2020 Oct 1.
The evolutionary assembly of the vertebrate bodyplan has been characterized as a long-term ecological trend toward increasingly active and predatory lifestyles, culminating in jawed vertebrates that dominate modern vertebrate biodiversity [1-8]. This contrast is no more stark than between the earliest jawed vertebrates and their immediate relatives, the extinct jawless, dermal armor-encased osteostracans, which have conventionally been interpreted as benthic mud-grubbers with poor swimming capabilities and low maneuverability [9-12]. Using computational fluid dynamics, we show that osteostracan headshield morphology is compatible with a diversity of hydrodynamic efficiencies including passive control of water flow around the body; these could have increased versatility for adopting diverse locomotor strategies. Hydrodynamic performance varies with morphology, proximity to the substrate, and angle of attack (inclination). Morphotypes with dorsoventrally oblate headshields are hydrodynamically more efficient when swimming close to the substrate, whereas those with dorsoventrally more prolate headshields exhibit maximum hydrodynamic efficiency when swimming free from substrate effects. These results suggest different hydrofoil functions among osteostracan headshield morphologies, compatible with ecological diversification and undermining the traditional view that jawless stem-gnathostomes were ecologically constrained [9-12] with the origin of jaws as the key innovation that precipitated the ecological diversification of the group [13, 14].
脊椎动物身体模式的进化组装被描述为一种长期的生态趋势,即朝着越来越活跃和捕食性的生活方式发展,最终形成了主导现代脊椎动物多样性的有颌脊椎动物[1-8]。这种对比在最早的有颌脊椎动物与其直接亲属——已灭绝的无颌、有鳞甲的盔甲鱼之间最为明显,后者传统上被解释为底栖泥食者,游泳能力差,机动性低[9-12]。我们利用计算流体动力学,表明盔甲鱼的头甲形态与多种水动力效率兼容,包括对水流的被动控制;这些可能为采用不同的运动策略提供了更大的多功能性。水动力性能随形态、与基底的接近程度和攻角(倾斜度)而变化。当靠近基底游泳时,具有背腹扁形头甲的形态型在水动力上更有效,而当远离基底的影响自由游泳时,具有背腹更扁形头甲的形态型表现出最大的水动力效率。这些结果表明,盔甲鱼头甲形态之间存在不同的水翼功能,与生态多样化兼容,并破坏了无颌脊椎动物在生态上受到限制的传统观点[9-12],认为有颌的起源是导致该群体生态多样化的关键创新[13,14]。