Suppr超能文献

利用稀有气体样本进行源类型估计。

Source type estimation using noble gas samples.

机构信息

Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99354, USA.

出版信息

J Environ Radioact. 2020 Dec;225:106439. doi: 10.1016/j.jenvrad.2020.106439. Epub 2020 Sep 30.

Abstract

A Bayesian source-term algorithm recently published by Eslinger et al. (2019) extended previous models by including the ability to discriminate between classes of releases such as nuclear explosions, nuclear power plants, or medical isotope production facilities when multiple isotopes are measured. Using 20 release cases from a synthetic data set previously published by Haas et al. (2017), algorithm performance was demonstrated on the transport scale (400-1000 km) associated with the radionuclide samplers in the International Monitoring System. Inclusion of multiple isotopes improves release location and release time estimates over analyses using only a single isotope. The ability to discriminate between classes of releases does not depend on the accuracy of the location or time of release estimates. For some combinations of isotopes, the ability to confidently discriminate between classes of releases requires only a few samples.

摘要

埃斯林格等人(2019 年)最近发布的贝叶斯源项算法通过纳入区分核爆炸、核电站或医用同位素生产设施等不同释放源类别的能力,对以往模型进行了扩展。该算法利用哈斯等人(2017 年)先前公布的综合数据集的 20 个释放案例,在与国际监测系统中的放射性核素取样器相关的输运尺度(400-1000 公里)上演示了算法性能。与仅使用单一同位素的分析相比,纳入多种同位素可提高释放位置和释放时间的估算精度。区分不同释放源类别的能力并不依赖于释放位置或时间估算的准确性。对于某些同位素组合,仅需少量样本即可有把握地区分不同释放源类别的释放。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验