Suppr超能文献

用于疾病分类的支持向量机-分类与回归树

SVM-CART for Disease Classification.

作者信息

Reynolds Evan, Callaghan Brian, Banerjee Mousumi

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109.

Department of Neurology, University of Michigan, Ann Arbor, MI 48109.

出版信息

J Appl Stat. 2019;46(16):2987-3007. doi: 10.1080/02664763.2019.1625876. Epub 2019 Jun 7.

Abstract

Classification and regression trees (CART) and support vector machines (SVM) have become very popular statistical learning tools for analyzing complex data that often arise in biomedical research. While both CART and SVM serve as powerful classifiers in many clinical settings, there are some common scenarios in which each fails to meet the performance and interpretability needed for use as a clinical decision-making tool. In this paper, we propose a new classification method, SVM-CART, that combines features of SVM and CART to produce a more flexible classifier that has the potential to outperform either method in terms of interpretability and prediction accuracy. Further-more, to enhance prediction accuracy we provide extensions of a single SVM-CART to an ensemble, and methods to extract a representative classifier from the SVM-CART ensemble. The goal is to produce a decision-making tool that can be used in the clinical setting, while still harnessing the stability and predictive improvements gained through developing the SVM-CART ensemble. An extensive simulation study is conducted to asses the performance of the methods in various settings. Finally, we illustrate our methods using a clinical neuropathy dataset.

摘要

分类与回归树(CART)和支持向量机(SVM)已成为用于分析生物医学研究中经常出现的复杂数据的非常流行的统计学习工具。虽然CART和SVM在许多临床环境中都是强大的分类器,但在某些常见情况下,它们各自都无法满足用作临床决策工具所需的性能和可解释性。在本文中,我们提出了一种新的分类方法SVM-CART,它结合了SVM和CART的特征,以产生一个更灵活的分类器,该分类器在可解释性和预测准确性方面有可能优于任何一种方法。此外,为了提高预测准确性,我们将单个SVM-CART扩展为一个集成模型,并提供从SVM-CART集成模型中提取代表性分类器的方法。目标是生成一种可用于临床环境的决策工具,同时仍能利用通过开发SVM-CART集成模型获得的稳定性和预测改进。我们进行了广泛的模拟研究,以评估这些方法在各种环境中的性能。最后,我们使用一个临床神经病变数据集来说明我们的方法。

相似文献

1
SVM-CART for Disease Classification.
J Appl Stat. 2019;46(16):2987-3007. doi: 10.1080/02664763.2019.1625876. Epub 2019 Jun 7.
2
SVM and SVM Ensembles in Breast Cancer Prediction.
PLoS One. 2017 Jan 6;12(1):e0161501. doi: 10.1371/journal.pone.0161501. eCollection 2017.
3
Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.
J Neurosci Methods. 2018 May 15;302:66-74. doi: 10.1016/j.jneumeth.2018.01.003. Epub 2018 Feb 3.
4
Vicinal support vector classifier using supervised kernel-based clustering.
Artif Intell Med. 2014 Mar;60(3):189-96. doi: 10.1016/j.artmed.2014.01.003. Epub 2014 Feb 7.
5
Reviewing ensemble classification methods in breast cancer.
Comput Methods Programs Biomed. 2019 Aug;177:89-112. doi: 10.1016/j.cmpb.2019.05.019. Epub 2019 May 20.
6
Classification of electrocardiogram signals with support vector machines and particle swarm optimization.
IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):667-77. doi: 10.1109/TITB.2008.923147.
7
Class-imbalanced classifiers for high-dimensional data.
Brief Bioinform. 2013 Jan;14(1):13-26. doi: 10.1093/bib/bbs006. Epub 2012 Mar 9.
8
White box radial basis function classifiers with component selection for clinical prediction models.
Artif Intell Med. 2014 Jan;60(1):53-64. doi: 10.1016/j.artmed.2013.10.001. Epub 2013 Oct 18.
9
Building more accurate decision trees with the additive tree.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19887-19893. doi: 10.1073/pnas.1816748116. Epub 2019 Sep 16.

引用本文的文献

1
Research on Sleep Staging Based on Support Vector Machine and Extreme Gradient Boosting Algorithm.
Nat Sci Sleep. 2024 Nov 26;16:1827-1847. doi: 10.2147/NSS.S467111. eCollection 2024.
2
DNA N-gram analysis framework (DNAnamer): A generalized N-gram frequency analysis framework for the supervised classification of DNA sequences.
Heliyon. 2024 Aug 24;10(17):e36914. doi: 10.1016/j.heliyon.2024.e36914. eCollection 2024 Sep 15.
3
Effects of environmental phenols on eGFR: machine learning modeling methods applied to cross-sectional studies.
Front Public Health. 2024 Aug 1;12:1405533. doi: 10.3389/fpubh.2024.1405533. eCollection 2024.
5
Use of machine learning to predict medication adherence in individuals at risk for atherosclerotic cardiovascular disease.
Smart Health (Amst). 2022 Dec;26. doi: 10.1016/j.smhl.2022.100328. Epub 2022 Oct 4.
6
Intelligent assistant diagnosis for pediatric inguinal hernia based on a multilayer and unbalanced classification model.
Front Physiol. 2023 Mar 14;14:1105891. doi: 10.3389/fphys.2023.1105891. eCollection 2023.
9
Altered Fractional Amplitude of Low-Frequency Fluctuation in Major Depressive Disorder and Bipolar Disorder.
Front Psychiatry. 2021 Oct 13;12:739210. doi: 10.3389/fpsyt.2021.739210. eCollection 2021.
10
Machine Learning Methods to Identify Missed Cases of Bladder Cancer in Population-Based Registries.
JCO Clin Cancer Inform. 2021 Jun;5:641-653. doi: 10.1200/CCI.20.00170.

本文引用的文献

1
Cancer subtype prediction from a pathway-level perspective by using a support vector machine based on integrated gene expression and protein network.
Comput Methods Programs Biomed. 2017 Apr;141:27-34. doi: 10.1016/j.cmpb.2017.01.006. Epub 2017 Jan 20.
2
Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images.
Biomed Res Int. 2017;2017:7961494. doi: 10.1155/2017/7961494. Epub 2017 Jan 4.
3
Association Between Metabolic Syndrome Components and Polyneuropathy in an Obese Population.
JAMA Neurol. 2016 Dec 1;73(12):1468-1476. doi: 10.1001/jamaneurol.2016.3745.
4
Metabolic Syndrome Components Are Associated With Symptomatic Polyneuropathy Independent of Glycemic Status.
Diabetes Care. 2016 May;39(5):801-7. doi: 10.2337/dc16-0081. Epub 2016 Mar 10.
5
Tree-based model for thyroid cancer prognostication.
J Clin Endocrinol Metab. 2014 Oct;99(10):3737-45. doi: 10.1210/jc.2014-2197. Epub 2014 Jul 17.
6
Identifying representative trees from ensembles.
Stat Med. 2012 Jul 10;31(15):1601-16. doi: 10.1002/sim.4492. Epub 2012 Feb 3.
9
Prevalence of peripheral neuropathy in the Parsi community of Bombay.
Neurology. 1991 Aug;41(8):1315-7. doi: 10.1212/wnl.41.8.1315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验